Pen Academic Publishing   |  ISSN: 2602-4810   |  e-ISSN: 2602-4535

Original article | International Journal of Innovative Approaches in Science Research 2020, Vol. 4(1) 15-22

Automated Data Collection of Drosophila Movement Behaviour Assays Using computer Vision in Python

Shad Arif Mohammed, Hawnaz Othman Najmalddin, Zhulia Jamal Omar & Zana Hamagharib Yarwais

pp. 15 - 22   |  DOI: https://doi.org/10.29329/ijiasr.2020.237.2   |  Manu. Number: MANU-2001-13-0001.R1

Published online: March 28, 2020  |   Number of Views: 51  |  Number of Download: 128


Abstract

Drosophila melanogaster, commonly known as the fruit fly, is the ideal model organism to study behavioural genetics. It has been extensively used in studying many diseases. Many of those studies still use manual methods to assess the fly’s behaviour under different conditions. In this article, we developed a method to track Drosophila melanogaster (both adults and larvae), and automate the process of data collection in larval crawling assay, and adult amputation assay.

Keywords: Drosophila melanogaster, automating bahavioural assays, Computer vision


How to Cite this Article?

APA 6th edition
Mohammed, S.A., Najmalddin, H.O., Omar, Z.J. & Yarwais, Z.H. (2020). Automated Data Collection of Drosophila Movement Behaviour Assays Using computer Vision in Python . International Journal of Innovative Approaches in Science Research, 4(1), 15-22. doi: 10.29329/ijiasr.2020.237.2

Harvard
Mohammed, S., Najmalddin, H., Omar, Z. and Yarwais, Z. (2020). Automated Data Collection of Drosophila Movement Behaviour Assays Using computer Vision in Python . International Journal of Innovative Approaches in Science Research, 4(1), pp. 15-22.

Chicago 16th edition
Mohammed, Shad Arif, Hawnaz Othman Najmalddin, Zhulia Jamal Omar and Zana Hamagharib Yarwais (2020). "Automated Data Collection of Drosophila Movement Behaviour Assays Using computer Vision in Python ". International Journal of Innovative Approaches in Science Research 4 (1):15-22. doi:10.29329/ijiasr.2020.237.2.

References
  1. Bradski, G. (2000). The opencv library. Dr Dobb’s J. Software Tools, 25, 120–125. [Google Scholar]
  2. Cao, W., Song, L., Cheng, J., Yi, N., Cai, L., Ho, M., & others. (2017). An Automated Rapid Iterative Negative Geotaxis Assay for Analyzing Adult Climbing Behavior in a Drosophila Model of Neurodegeneration. JoVE (Journal of Visualized Experiments), (127), e56507. [Google Scholar]
  3. Chattopadhyay, A., A’tondra, V. G., & Galko, M. J. (2012). Local and global methods of assessing thermal nociception in Drosophila larvae. JoVE (Journal of Visualized Experiments), (63), e3837. [Google Scholar]
  4. Dionne, M. S., & Schneider, D. S. (2008). Models of infectious diseases in the fruit fly Drosophila melanogaster. Disease Models & Mechanisms, 1(1), 43–49. [Google Scholar]
  5. Eidhof, I., Fenckova, M., Elurbe, D. M., van de Warrenburg, B., Nobau, A. C., & Schenck, A. (2017). High-throughput analysis of locomotor behavior in the Drosophila island assay. JoVE (Journal of Visualized Experiments), (129), e55892. [Google Scholar]
  6. Gargano, J. W., Martin, I., Bhandari, P., & Grotewiel, M. S. (2005). Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental Gerontology, 40(5), 386–395. [Google Scholar]
  7. Isakov, A., Buchanan, S. M., Sullivan, B., Ramachandran, A., Chapman, J. K. S., Lu, E. S., … de Bivort, B. (2016). Recovery of locomotion after injury in Drosophila melanogaster depends on proprioception. Journal of Experimental Biology, 219(11), 1760–1771. [Google Scholar]
  8. Khuong, T. M., Wang, Q.-P., Manion, J., Oyston, L. J., Lau, M.-T., Towler, H., … Neely, G. G. (2019). Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila. Science Advances, 5(7), eaaw4099. [Google Scholar]
  9. Krench, M., & Littleton, J. T. (2013). Modeling Huntington disease in Drosophila: Insights into axonal transport defects and modifiers of toxicity. Fly, 7(4), 229–236. [Google Scholar]
  10. Lu, B., & Vogel, H. (2009). Drosophila models of neurodegenerative diseases. Annual Review of Pathological Mechanical Disease, 4, 315–342. [Google Scholar]
  11. Nichols, C. D., Becnel, J., & Pandey, U. B. (2012). Methods to assay Drosophila behavior. JoVE (Journal of Visualized Experiments), (61), e3795. [Google Scholar]
  12. Prüßing, K., Voigt, A., & Schulz, J. B. (2013). Drosophila melanogaster as a model organism for Alzheimer’s disease. Molecular Neurodegeneration, 8(1), 35. [Google Scholar]
  13. Read, R. D. (2011). Drosophila melanogaster as a model system for human brain cancers. Glia, 59(9), 1364–1376. [Google Scholar]
  14. Resh, V. H., & Cardé, R. T. (2009). Encyclopedia of insects. Academic press. [Google Scholar]
  15. Rosas-Arellano, A., Estrada-Mondragón, A., Piña, R., Mantellero, C. A., & Castro, M. A. (2018). The tiny drosophila melanogaster for the biggest answers in huntington’s Disease. International Journal of Molecular Sciences, 19(8), 2398. [Google Scholar]
  16. Rubin, G. M. (1988). Drosophila melanogaster as an experimental organism. Science, 240(4858), 1453–1459. [Google Scholar]
  17. Simon, A. F., Chou, M.-T., Salazar, E. D., Nicholson, T., Saini, N., Metchev, S., & Krantz, D. E. (2012). A simple assay to study social behavior in Drosophila: measurement of social space within a group 1. Genes, Brain and Behavior, 11(2), 243–252. [Google Scholar]
  18. Taylor, M. J., & Tuxworth, R. I. (2019). Continuous tracking of startled Drosophila as an alternative to the negative geotaxis climbing assay. Journal of Neurogenetics, 33(3), 190–198. [Google Scholar]
  19. Xiong, Y., & Yu, J. (2018). Modeling Parkinson’s disease in Drosophila what have we learned for dominant traits. Frontiers in Neurology, 9, 228. [Google Scholar]
  20. Xu, S. Y., Cang, C. L., Liu, X. F., Peng, Y. Q., Ye, Y. Z., Zhao, Z. Q., & Guo, A. K. (2006). Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene. Genes, Brain and Behavior, 5(8), 602–613. [Google Scholar]