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Abstract 

Drosophila melanogaster, commonly known as the fruit fly, is the ideal model organism to study behavioural genetics. It has been 

extensively used in studying many diseases. Many of those studies still use manual methods to assess the fly’s behaviour under 

different conditions. In this article, we developed a method to track Drosophila melanogaster (both adults and larvae), and automate 

the process of data collection in larval crawling assay, and adult amputation assay. 
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INTRODUCTION 

The fruit fly, Drosophila melanogaster, has long been used in biological research projects since 

early 1900s (Resh & Cardé, 2009; Rubin, 1988). It is one of the best model organisms of choice to model 

diseases like neurodegenerative disorders (Lu & Vogel, 2009; Rosas-Arellano, Estrada-Mondragón, 

Piña, Mantellero, & Castro, 2018), cancer and cardiovascular diseases (Nichols, Becnel, & Pandey, 

2012). The rationale behind using this model organism is its simplicity in its body architecture, 

considerably short generation time, easy husbandry as well as high similarity of its genes with human 

genes. Finally, its well-studied behaviour is among the best reasons behind using the organism for 

modeling diseases.  

 There are a number of methods that are implemented to assess fruit fly behaviour while studying 

such diseases. Such methods include RING (Rapid Iterative Negative Geotaxis) (Taylor & Tuxworth, 

2019) and larval crawling assays (Nichols et al., 2012), Local and Global Thermal Nociception Assay 

(Chattopadhyay, A’tondra, & Galko, 2012), and leg amputation assay (Khuong et al., 2019) that is used 

to assess neuropathic sensitisation in Drosophila. These methods are continuously being modified to 

enhance the data collection and reduce the observation error. One of such enhancement is the multi-

channeled RING apparatus used by (Gargano, Martin, Bhandari, & Grotewiel, 2005; Nichols et al., 

2012) to contain a large number of flies with the same age and gender, thereby reducing variation while 

collecting data. Similar strategies are applied to larval crawling and leg amputation assays. However, 

since these are still manually calculated, the error rate of all of those approaches are limited to the human 

factor, to some extent. To get around this issue, it is best to automate the data collection using computer 

algorithms.  

 In order to further enhance the process of data collection from such assays, we aimed at 

automating the whole process by developing an algorithm that can be used for all the above mentioned 

methods. We achieved this by implementing computer vision technology using OpenCV (Bradski, 

2000) library of Python 3 programming language. Hence, the objectives of this research project include:  

1) Automating fly (larvae and adults) movement pattern tracking in Larval Crawling, RING and 

leg amputation assays. 

2) Automate data collection and calculation of speed of individual flies from the tracked videos. 

METHODOLOGY  

Automating video tracking and data collection of Drosophila melanogaster 

Currently, the process of data collection in behavioural genetics assays are mostly conducted 

manually (Eidhof et al., 2017; Simon et al., 2012), and thus it is both time consuming and error prone. 

An example of such manually processed data is shown in figure (1), in which the video recording is 

played several times and screenshots are taken at different instances, then the distances between different 



Yarwais et al. / Uluslararası Fen Araştırmalarında Yenilikçi Yaklaşımlar Dergisi /  

International Journal of Innovative Approaches in Science Research, 2020, Vol. 4 (1), 15-22 

17 

points are measured either using ruler or electronic measurements. For assays that include fly jumping 

patterns, the distance and speed of the flies cannot be accurately measured manually. Instead, the number 

of jumps a fly makes is counted then calculations are made as number of jumps/minute. Hence, it is best 

to use a computer vision algorithm to bypass such hurdles and accurately measure the difference 

between the control and the treatment sample sets.  

 

 

 

 

  

 

 

 

 

 

Figure 1. Leg amputation assay, manual annotation procedure. Taken from (Khuong et al., 2019). 

By using python’s computer vision library (openCV) we were able to develop a software that can 

track the distance traveled by individual flies being placed on a petri-dish for leg amputation assay. 

Injured and normal fly video tapes were taken from (Khuong et al., 2019), the method involves taking 

the initial position of the fly then calculating pairwise distances between each successive moves/frame 

using the following equation: 

x = (sum((x1-x2)+ (y1-y2))2)0.5, where x is the variable that holds the output of the equation in 

every run of the test. x1,x2,y1,and y2 frame the position of the fly being tracked in the duration of the 

video recording, in real time. The Using this syntax in openCV, we were able to track and collect total 

distance migrated per individual flies in pixel per minute (see the results section for more 

information). After that, we recorded Drosophila larvae crawling on wet petri-dishes and assessed its 

walking speed using our software. Last but not the least, we tried to use the software to track flies in 

RING apparatus. For that purpose, a group of 6 to 10 adult, male flies were put in plastic falcon tubes 

and camera recorded then assessed for the validity of the software.  

How the software works 

The software is written as an open source module in python that contains one function. Once the 

function is called, it asks for the name of a video with its extension. Then, the video will be opened for 
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the user to drag a square around the object that the user wants to track (in this case, it is the fruit fly, be 

it larva or adult). After testing it on many samples, it turns out that the software works best if the 

recording is carried out on a white background with minimum shading. Supplementary video (1) show 

the process of tracking a sample of Drosophila melanogaster after cutting its leg. The video recording 

was taken from (Khuong et al., 2019) and the procedure is carried out on the video using our algorithm. 

RESULTS 

Automated data collection of normal and injured flies 

The following graphical representation shows how the flies are tracked by the algorithm as well 

as the output.  

 

Figure 2. Automating data collection from Drosophila. 

Figure 2 Automating data collection from Drosophila melanogaster leg amputation assay.  As it is shown in the figure, the blue square drawn 

around each fly sets the algorithm to track the fly. Then, the analysis as shown in the tracking results section are provided as distance traveled 

and number of steps the fly makes to reach that distance with the speed of the individual fly. The normal fly traveled 44 mm in 13 sec and its 

speed is 3 mm/sec. However, the injured fly traveled 71 mm in a rather similar period of time and its speed is about twice as much as the 

control sample.    
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Automated Data Collection in Larval Crawling Assay 

Following up the previous procedure, we tried implementing the algorithm on Larval Crawling 

Assay automation. Figure (3) explains the process of data input and tracking the larva sample.  

Figure 3. Data input and tracking of Drosophila larvae, A) is the initial point of the larva, B) is when 

the larva starts to crawl, C) The end of the assay.  

Since fly larvae move too slow, the speed parameter returned a small number, i.e. 1 step/second. 

We also tried implementing the algorithm on a grid background as it is shown in figure (4), but it lost 

tracking the fly due to extensive background noise. Hence, it is suggested to record the videos on a clean 

white background if attempted for such assays.  

 

Figure 4. Larval Crawling Assay on grid background. The algorithm fails to track the larvae on grid 

background as the border lines stuck with the squares of the grid lines. 
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Comparison with manual method 

In this study, we implemented automating data collection of certain fly assays using computer 

vision technology in python programming language. Manual methods have some drawbacks, such as 

being time consuming, error prone and often not reliable for large datasets. Hence, automating assays 

like leg amputation assay is of great importance.  

Khuong et al., 2019 performed leg amputation assay manually, in which they took samples of 

flies ( both injured and control samples) and counted the number of jumps per minute in each fly. They 

video recorded their sample sets and tracked the videos manually. Figure 1, shows the process of 

tracking fly movement in leg amputation assay, Figure 2 shows our automated method and the results 

we obtained after tracking the same samples they used in their assays. Our automated method has a 

difference with their manually annotated method. We track the fly movement in terms of total distance 

migrated in a specified duration of time and the algorithm does not depend on jumping behaviour alone, 

it rather considers the distance migrated including the jumping behaviour. On the other hand, the 

manually annotated method could be negatively impacted by several unknown confounding factors such 

as temperature, accuracy and precision of the observer, and health status of the flies, and jumping 

behaviour differences among the samples. Thus, one can rely on the automated method for better results 

and less time being consumed on performing the assay.  

In addition to leg amputation assay, larval crawling assay is yet another one that is being 

conducted manually in many laboratories worldwide (Nichols et al., 2012). Figure 3 shows the process 

of automating larval crawling assay and how to collect data from Drosophila larvae without manually 

annotating their crawling. This way, one can use the same algorithm to automate data collection from 

larval crawling assay.   

Discussion 

Behavioural assays using Drosophila can be used to study many health related issues, including 

neurodegenerative diseases (Krench & Littleton, 2013; Prüßing, Voigt, & Schulz, 2013; Xiong & Yu, 

2018), cancer (Read, 2011), and many infectious diseases (Dionne & Schneider, 2008). Pain perception 

is yet another area of research that has been recently studied using Drosophila melanogaster (Khuong 

et al., 2019). However, nearly all of the assays that are used to assess fruit fly’s behaviour suffer from 

manual annotation errors and time consumption (Cao et al., 2017). 

A better approach towards analysing data from such assay outputs is to use computer vision 

technology. In techniques like heat driven nociception assay, fruit flies that are injured tend to jump 

more often than a healthier one, this is due to their escape response behaviour (Khuong et al., 2019; Xu 

et al., 2006). The number of jumps/minute is one parameter used to assess the flies’ noxious response 

to unpleasant heat, especially when injured (Khuong et al., 2019). Also, flies travel longer distances 



Yarwais et al. / Uluslararası Fen Araştırmalarında Yenilikçi Yaklaşımlar Dergisi /  

International Journal of Innovative Approaches in Science Research, 2020, Vol. 4 (1), 15-22 

21 

when they jump compared to normal walking. Hence, we accounted for the measurements of the total 

distance a fly makes when tracked by our software. As it is shown in figures (1 and 2), the injured fly 

travels just about twice the distance of a normal fly in the same duration of time. Thus, the software can 

be used to assess this behaviour efficiently and accurately.  

From the data science point of view, some behavioural assays that aim at monitoring movement 

pattern during recovery often include injuring flies and then counting the number by which any given 

fly jumps per minute (Khuong et al., 2019) or observe the walking pattern changes during recovery 

period (Isakov et al., 2016). The former parameter does not tell the qualities of the jumps by the flies 

and it is difficult for feature extractions later on when attempted to model diseases mathematically. 

However, calculating the distance that the flies travel per a duration of time provides more information 

about the health status of the flies, and enables scientists extract more features for disease modeling 

purposes.  

Another reason for implementing computer vision in this project is that openCV library is now  

integrated with TensorFlow, which is a fabulous unsupervised machine learning library. This computer 

vision technology along with machine learning would provide even better understanding to Drosophila 

behaviour when modeled for different diseases, which will in turn further enhance our understanding to 

human diseases. This can be achieved by unraveling hidden patterns through implementing even other 

unsupervised machine learning technology such as clustering algorithms (like principle component 

analysis) and feature extraction. Consequently, using fruit flies will be even more valuable to broaden 

the horizon of our knowledge about human diseases and disorders.  

Conclusion 

 To sum up, Drosophila melanogaster is one of the widely used model organisms for its simple 

body architecture and ease of use in the library. There are many assays being developed to study the 

fly’s behaviour, most of them are manually annotated. In this study, we tried to automate the process of 

data collection and feature extraction by calculating three parameters, which are number of steps a fly 

makes, duration of the recording and speed of the fly in that time. The source code of this work will be 

made available as an open-source project for further development and tailoring by other scientists in the 

field of behavioural genetics.  
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