- Aaltonen, E. K. J., & Silow, M. (2008). Transmembrane topology of the Acr3 family arsenite transporter from Bacillus subtilis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(4), 963–973. [Google Scholar]
- Ahmadpour, D., Maciaszczyk‐Dziubinska, E., Babazadeh, R., Dahal, S., Migocka, M., Andersson, M., … Hohmann, S. (2016). The mitogen‐activated protein kinase Slt2 modulates arsenite transport through the aquaglyceroporin Fps1. FEBS Letters, 590(20), 3649–3659. [Google Scholar]
- Aposhian, H. V., & Aposhian, M. M. (2006). Arsenic toxicology: five questions. Chemical Research in Toxicology, 19(1), 1–15. [Google Scholar]
- Bánfalvi, G. (2011). Heavy metals, trace elements and their cellular effects. In Cellular effects of heavy metals (pp. 3–28). Springer. [Google Scholar]
- Bates, M. N., Smith, A. H., & Hopenhayn-Rich, C. (1992). Arsenic ingestion and internal cancers: a review. American Journal of Epidemiology, 135(5), 462–476. [Google Scholar]
- Batista-Nascimento, L., Toledano, M. B., Thiele, D. J., & Rodrigues-Pousada, C. (2013). Yeast protective response to arsenate involves the repression of the high affinity iron uptake system. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1833(5), 997–1005. [Google Scholar]
- Bhattacharya, P., Frisbie, S. H., Smith, E., Naidu, R., Jacks, G., & Sarkar, B. (2002). Arsenic in the environment: a global perspective. Handbook of Heavy Metals in the Environment. Marcell Dekker Inc., New York, 147–215. [Google Scholar]
- Bun-ya, M., Shikata, K., Nakade, S., Yompakdee, C., Harashima, S., & Oshima, Y. (1996). Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Current Genetics, 29(4), 344–351. [Google Scholar]
- Chen, C. J., Chen, C. W., Wu, M. M., & Kuo, T. L. (1992). Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. British Journal of Cancer, 66(5), 888–892. [Google Scholar]
- Chu, H.-A., & Crawford-Brown, D. (2006). Inorganic Arsenic in Drinking Water and Bladder Cancer: A Meta-Analysis for Dose-Response Assessment. International Journal of Environmental Research and Public Health, 3(4), 316–322. https://doi.org/10.3390/ijerph2006030039. [Google Scholar] [Crossref]
- Cortés, P., Castrejón, V., Sampedro, J. G., & Uribe, S. (2000). Interactions of arsenate, sulfate and phosphate with yeast mitochondria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1456(2–3), 67–76. [Google Scholar]
- Cunningham, K. W., & Fink, G. R. (1994). Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. The Journal of Cell Biology, 124(3), 351–363. [Google Scholar]
- Da Silva, J. J. R. F., & Williams, R. J. P. (2001). The biological chemistry of the elements: the inorganic chemistry of life. Oxford University Press. [Google Scholar]
- Di, Y., & Tamás, M. J. (2007). Regulation of the arsenic-responsive transcription factor Yap8p involves the ubiquitin-proteasome pathway. Journal of Cell Science, 120(2), 256–264. [Google Scholar]
- Escoté, X., Zapater, M., Clotet, J., & Posas, F. (2004). Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nature Cell Biology, 6(10), 997. [Google Scholar]
- Ferreira, R. T., Menezes, R. A., & Rodrigues-Pousada, C. (2015). E4-Ubiquitin ligase Ufd2 stabilizes Yap8 and modulates arsenic stress responses independent of the U-box motif. Biology Open, bio-010405. [Google Scholar]
- Ferreira, R. T., Silva, A. R. C., Pimentel, C., Batista-Nascimento, L., Rodrigues-Pousada, C., & Menezes, R. A. (2012). Arsenic stress elicits cytosolic Ca2+ bursts and Crz1 activation in Saccharomyces cerevisiae. Microbiology, 158(9), 2293–2302. [Google Scholar]
- Fu, H.-L., Meng, Y., Ordóñez, E., Villadangos, A. F., Bhattacharjee, H., Gill, J. A., … Rosen, B. P. (2009). Properties of arsenite efflux permeases (Acr3) from Alkaliphilus metalliredigens and Corynebacterium glutamicum. Journal of Biological Chemistry, jbc-M109. [Google Scholar]
- Ghosh, M., Shen, J., & Rosen, B. P. (1999). Pathways of As (III) detoxification in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 96(9), 5001–5006. [Google Scholar]
- Goldberg, A. L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426(6968), 895. [Google Scholar]
- González-Novo, A., Jiménez, J., Clotet, J., Nadal-Ribelles, M., Cavero, S., de Nadal, E., & Posas, F. (2015). Hog1 targets Whi5 and Msa1 transcription factors to down-regulate cyclin expression upon stress. Molecular and Cellular Biology, MCB-01279. [Google Scholar]
- Halem, D., Bakker, S. A., Amy, G., & Dijk, J. (2009). Arsenic in drinking water: A worldwide water quality concern for water supply companies. Drinking Water Engineering and Science (Vol. 2). https://doi.org/10.5194/dwes-2-29-2009 [Google Scholar] [Crossref]
- Haugen, A. C., Kelley, R., Collins, J. B., Tucker, C. J., Deng, C., Afshari, C. A., … Van Houten, B. (2004). Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biology, 5(12), R95. [Google Scholar]
- Holland, S., Lodwig, E., Sideri, T., Reader, T., Clarke, I., Gkargkas, K., … Avery, S. V. (2007). Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biology, 8(12), R268. [Google Scholar]
- Hosiner, D., Lempiäinen, H., Reiter, W., Urban, J., Loewith, R., Ammerer, G., … Schüller, C. (2009). Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response. Molecular Biology of the Cell, 20(3), 1048–1057. [Google Scholar]
- Jacobson, T., Navarrete, C., Sharma, S. K., Sideri, T. C., Ibstedt, S., Priya, S., … Tamás, M. J. (2012). Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. J Cell Sci, jcs-107029. [Google Scholar]
- Kim, K.-W., Chanpiwat, P., Hanh, H. T., Phan, K., & Sthiannopkao, S. (2011). Arsenic geochemistry of groundwater in Southeast Asia. Frontiers of Medicine, 5(4), 420–433. https://doi.org/10.1007/s11684-011-0158-2 [Google Scholar] [Crossref]
- Kiriyama, K., Hara, K. Y., & Kondo, A. (2012). Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Applied Microbiology and Biotechnology, 96(4), 1021–1027. [Google Scholar]
- Kitchin, K. T., & Wallace, K. (2008). The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. Journal of Inorganic Biochemistry, 102(3), 532–539. [Google Scholar]
- Kuge, S., & Jones, N. (1994). YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. The EMBO Journal, 13(3), 655–664. [Google Scholar]
- Kumar, N. V., Yang, J., Pillai, J. K., Rawat, S., Solano, C., Kumar, A., … Tamás, M. J. (2016). Arsenic directly binds to and activates the yeast AP-1-like transcription factor Yap8. Molecular and Cellular Biology, 36(6), 913–922. [Google Scholar]
- Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., & Toledano, M. B. (1999). Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. Journal of Biological Chemistry, 274(23), 16040–16046. [Google Scholar]
- Lee, J., & Levin, D. E. (2015). Rgc2 Regulator of Glycerol Channel Fps1 Functions as Homo-and Hetero-dimers with Rgc1. Eukaryotic Cell, EC-00073. [Google Scholar]
- Lee, J., & Levin, D. E. (2018). Intracellular mechanism by which arsenite activates the yeast stress MAPK Hog1. Molecular Biology of the Cell, 29(15), 1904–1915. [Google Scholar]
- Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews. Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028 [Google Scholar] [Crossref]
- Liu, Z., Boles, E., & Rosen, B. P. (2004). Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae. Journal of Biological Chemistry, 279(17), 17312–17318. [Google Scholar]
- Liu, Z., Sanchez, M. A., Jiang, X., Boles, E., Landfear, S. M., & Rosen, B. P. (2006). Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochemical and Biophysical Research Communications, 351(2), 424–430. [Google Scholar]
- Maciaszczyk-Dziubinska, E., Wawrzycka, D., & Wysocki, R. (2012). Arsenic and antimony transporters in eukaryotes. International Journal of Molecular Sciences, 13(3), 3527–3548. [Google Scholar]
- Matia‐González, A. M., & Rodríguez‐Gabriel, M. A. (2011). Slt2 MAPK pathway is essential for cell integrity in the presence of arsenate. Yeast, 28(1), 9–17. [Google Scholar]
- Menezes, R. A., Pimentel, C., Silva, A. R. C., Amaral, C., Merhej, J., Devaux, F., & Rodrigues-Pousada, C. (2017). Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1860(4), 472–481. [Google Scholar]
- Migdal, I., Ilina, Y., Tamás, M. J., & Wysocki, R. (2008). Mitogen-activated protein kinase Hog1 mediates adaptation to G1 checkpoint arrest during arsenite and hyperosmotic stress. Eukaryotic Cell, 7(8), 1309–1317. [Google Scholar]
- Morgan, B. A., Banks, G. R., Toone, W. M., Raitt, D., Kuge, S., & Johnston, L. H. (1997). The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. The EMBO Journal, 16(5), 1035–1044. [Google Scholar]
- Mukhopadhyay, R., & Rosen, B. P. (1998). Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiology Letters, 168(1), 127–136. [Google Scholar]
- Mukhopadhyay, R., Shi, J., & Rosen, B. P. (2000). Purification and Characterization of Acr2p, the Saccharomyces cerevisiae Arsenate Reductase. Journal of Biological Chemistry, 275(28), 21149–21157. [Google Scholar]
- Nathaniel, M. M. (2005). Arsenic: In Search of an Antidote to a Global Poison. Environmental Health Perspectives, 113(6), A378–A386. https://doi.org/10.1289/ehp.113-a378 [Google Scholar] [Crossref]
- Outten, C. E., & Albetel, A.-N. (2013). Iron sensing and regulation in Saccharomyces cerevisiae: ironing out the mechanistic details. Current Opinion in Microbiology, 16(6), 662–668. [Google Scholar]
- Porquet, A., & Filella, M. (2007). Structural evidence of the similarity of Sb (OH) 3 and As (OH) 3 with glycerol: implications for their uptake. Chemical Research in Toxicology, 20(9), 1269–1276. [Google Scholar]
- Ralph, S. J. (2008). Arsenic-based antineoplastic drugs and their mechanisms of action. Metal-Based Drugs, 2008. [Google Scholar]
- Ramírez-Solís, A., Mukopadhyay, R., Rosen, B. P., & Stemmler, T. L. (2004). Experimental and Theoretical Characterization of Arsenite in Water: Insights into the Coordination Environment of As− O. Inorganic Chemistry, 43(9), 2954–2959. [Google Scholar]
- Rathod, J., Tu, H.-P., Chang, Y.-I., Chu, Y.-H., Tseng, Y.-Y., Jean, J.-S., & Wu, W.-S. (2018). YARG: A repository for arsenic-related genes in yeast. PloS One, 13(7), e0201204. [Google Scholar]
- Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., … Smith, M. T. (1992). Cancer risks from arsenic in drinking water. Environmental Health Perspectives, 97, 259–267. https://doi.org/10.1289/ehp.9297259 [Google Scholar] [Crossref]
- Sorin, A., Rosas, G., & Rao, R. (1997). PMR1, a Ca2+-ATPase in yeast Golgi, has properties distinct from sarco/endoplasmic reticulum and plasma membrane calcium pumps. Journal of Biological Chemistry, 272(15), 9895–9901. [Google Scholar]
- Tamás, M. J., Fauvet, B., Christen, P., & Goloubinoff, P. (2018). Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Current Genetics, 64(1), 177–181. [Google Scholar]
- Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., & Christen, P. (2014). Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4(1), 252–267. [Google Scholar]
- Thorsen, M., Lagniel, G., Kristiansson, E., Junot, C., Nerman, O., Labarre, J., & Tamás, M. J. (2007). Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiological Genomics, 30(1), 35–43. [Google Scholar]
- Thorsen, M., Perrone, G. G., Kristiansson, E., Traini, M., Ye, T., Dawes, I. W., … Tamás, M. J. (2009). Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae. BMC Genomics, 10(1), 105. [Google Scholar]
- Vahter, M. (2008). Health effects of early life exposure to arsenic. Basic & Clinical Pharmacology & Toxicology, 102(2), 204–211. https://doi.org/10.1111/j.1742-7843.2007.00168.x [Google Scholar] [Crossref]
- Vujcic, M., Shroff, M., & Singh, K. K. (2007). Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae. Cancer Research, 67(20), 9740–9749. [Google Scholar]
- Wysocki, R., Bobrowicz, P., & Ułaszewski, S. (1997). The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. Journal of Biological Chemistry, 272(48), 30061–30066. [Google Scholar]
- Wysocki, R., & Tamás, M. J. (2011). Saccharomyces cerevisiae as a model organism for elucidating arsenic tolerance mechanisms. In Cellular Effects of Heavy Metals (pp. 87–112). Springer. [Google Scholar]
- Yang, X., Lau, K.-Y., Sevim, V., & Tang, C. (2013). Design principles of the yeast G1/S switch. PLoS Biology, 11(10), e1001673. [Google Scholar]
- Yompakdee, C., Bun-ya, M., Shikata, K., Ogawa, N., Harashima, S., & Oshima, Y. (1996). A putative new membrane protein, Pho86p, in the inorganic phosphate uptake system of Saccharomyces cerevisiae. Gene, 171(1), 41–47. [Google Scholar]
- Yu, M.-H., & Tsunoda, H. (2004). Environmental toxicology: biological and health effects of pollutants. crc press. [Google Scholar]
|