International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2019, Vol. 3(2) 20-40

On the CMAS Problem in Thermal Barrier Coatings: Benchmarking Thermochemical Resistance of Oxides Alternative to YSZ Through a Microscopic Standpoint

Çağan Berker İyi, Martha Mecartney & Daniel R. Mumm

pp. 20 - 40   |  DOI: https://doi.org/10.29329/ijiasr.2019.197.1

Published online: June 28, 2019  |   Number of Views: 319  |  Number of Download: 769


Abstract

This study focuses on experimental modelling of the failure of Thermal Barrier Coatings (TBCs) due to attack of CMAS (Calcia-Magnesia-Alumina-Silicate), which is often found in harsh environments, via glassy phase infiltration. Volcanic ash and dust, sand particles, and fly ash, which contain CMAS, are imminent threats impeding predictable lifetimes of TBCs. Such incurrence directly affects the geometry and clinging to bond coat, and intrinsic material properties such as thermal conductivity and crystal structure of TBC are modified after exposure to CMAS, which ultimately results in delamination, spallation and failure of the coating material. The scope of this work is to survey the reactivity of CMAS with various oxide systems, and evaluate possible oxide systems that can be replaced and/or used with Yttria-stabilized Zirconia (YSZ) by investigating the penetration depth and reactivity after sintering with CMAS. A cost-effective method to observe the reaction of candidate oxides with CMAS is suggested and administired; understanding the main mechanism that causes the failure of top coat in the wake of CMAS infiltration, and seeking solutions for the problem is performed by taking advantage of Scanning Electron Microscopy (SEM). Recently suggested ceramic oxide systems that form in pyrochlore structure, some perovskite structures in various compositions, monazite, mullite and YSZ are studied. The possible outcome consequent upon CMAS infiltration are concluded and course for designing novel material systems that are expected to withstand the CMAS attacks better than the state-of-the-art 4mole% YSZ is defined. 5% mole Yb-doped SrZrO3(5Yb-SZ) and favored pyrochlores such as Gd2r2O7 and GdYbZr2O7 are found to be better mitigating CMAS attacks.

Keywords: CMAS, thermal barrier coating, perovskite, pyrochlore, glassy phase infiltration


How to Cite this Article

APA 6th edition
Iyi, C.B., Mecartney, M. & Mumm, D.R. (2019). On the CMAS Problem in Thermal Barrier Coatings: Benchmarking Thermochemical Resistance of Oxides Alternative to YSZ Through a Microscopic Standpoint . International Journal of Innovative Approaches in Science Research, 3(2), 20-40. doi: 10.29329/ijiasr.2019.197.1

Harvard
Iyi, C., Mecartney, M. and Mumm, D. (2019). On the CMAS Problem in Thermal Barrier Coatings: Benchmarking Thermochemical Resistance of Oxides Alternative to YSZ Through a Microscopic Standpoint . International Journal of Innovative Approaches in Science Research, 3(2), pp. 20-40.

Chicago 16th edition
Iyi, Cagan Berker, Martha Mecartney and Daniel R. Mumm (2019). "On the CMAS Problem in Thermal Barrier Coatings: Benchmarking Thermochemical Resistance of Oxides Alternative to YSZ Through a Microscopic Standpoint ". International Journal of Innovative Approaches in Science Research 3 (2):20-40. doi:10.29329/ijiasr.2019.197.1.

References

    [1] Bathie W., Fundamentals of Gas Turbines 2nd ed, John Wiley&Sons, 1996.

    [2] Padture N.P., Gell M., Jordan E.H., Thermal Barrier Coatings for Gas-Turbine Engine Applications. Science, 2002. 296: p. 280-284.

    [3] Jones R.L., Metallurgical and Ceramic Protective Coatings, ed: K. H. Stern, 1st ed, Chapman and Hall, London, 1996. p. 194.

    [4] Pollock T.M., Tin S., Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure, and Properties. Journal of Propulsion and Power, 2006. 22 [2]: p. 361-374.

    [5] Miller R.A., Current Status of Thermal Barrier Coatings – An Overview, Surface and Coatings Technology, 1987. 30: p. 1-11.

    [6] Levi C.G., Emerging materials and processes for thermal barrier systems. Current Opinion in Solid State and Materials Science, 2004. 8: p.77-91.

    [7] Limarga A.M., Vaßen R., Clarke D.R., Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient. Journal of Applied Mechanics, 2011. 78: 011003-1-9.

    [8] Heeg B., Tolpygo V.K., Clarke D.R., Damage Evolution in Thermal Barrier Coatings with Thermal Cycling. Journal of the American Ceramic Society, 2011. 94 [1]: p. 112-119.

    [9] Wellman R.G., Nicholls J.R., Erosion, corrosion, and erosion-corrosion of EB PVD thermal barrier coatings. Tribology International, 2008. 41: p: 657-662.

    [10] Ruud J.A., Bartz A., Borom M.P., and Johnson C.A., Strength Degradation and Failure Mechanisms of Electron-Beam Physical-Vapor-Deposited Thermal Barrier Coatings. Journal of the American Ceramic Society, 2001. 84 [7]: p. 1545-52.

    [11] Portinha A., Teixeira V., Carneiro J., Beghi M.G., Bottani C.E., Franco N., Vaßen R., Stöver D., Sequeira A.D., Residual Stresses and elastic modulus of thermal barrier coatings graded in porosity. Surface & Coatings Technology, 2004. 188-189: p: 120-128.

    [12] Shillington E. A., Clarke D.R., Spalling Failure of a Thermal Barrier Coating Associated with Aluminum Depletion in The Bond-Coat. Acta Materialia, 1999. 47 80 [4]: p. 1297-1305.

    [13] Guo H., Gong S., Xu H., Evaluation of hot-fatigue behaviors of EB-PVD gradient thermal barrier coatings. Materials Science and Engineering A, 2002. 325: p. 261- 269.

    [14] Mumm D.R., Evans A.G., Spitsberg I.T., Characterization of a Cyclic Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System. Acta Materialia, 2001. 49: p. 2329-2340.

    [15] Evans A.G., Mumm D.R., Hutchinson J.W., Meier G.H., Pettit F.S., Mechanisms controlling the durability of thermal barrier coatings. Progress in Materials Science, 2001. 46: p. 505-553.

    [16] Garvie R.C., Hannink R.H., Pascoe R.T., Ceramic Steel. Nature, 1975. 258 [5537]: p. 703-704.

    [17] Liebert et al., Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation. NASA Tech. Memo., (1976). X-3410.

    [18] Stecura S., Two-layer thermal barrier coating for turbine airfoils — furnace and burner rig test results. NASA Tech. Memo., 1976. X-3425.

    [19] Zhong X.H., Wang Y.M., Xu Z.H., Zhang Y.F., Zhang J.F., Cao X.Q., Hot-corroion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate-sulfate salts. Journal of the European Ceramic Society, 2010. 30: p. 1401- 1408.

    [20] Clarke D.R., Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 2003. 163-164: p. 67-74.

    [21] Krämer S., Yang J., Levi C.G, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits. Journal of the American Ceramic Society, 2006. 89 [10]: p. 3167-3175.

    [22] Borom M.P., Johnson C.A., Peluso L.A., Role of environmental deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 1996. 86-87: p. 116-126.

    [23] Mercer C., Faulhaber S., Evans A.G., Darolia R., A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration. Acta Materialia, 2005. 53 [4]: p. 1029-1039.

    [24] Krämer S., Faulhaber S., Chambers M., Clarke D.R., Levi C.G., Hutchinson J.W., Evans A.G., Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration. Materials Science and Engineering A, 2008. 490: p. 26-35.

    [25] Li L., Hitchman N., Knapp J., Failure of Thermal Barrier Coatings Subjected to CMAS Attack. Journal of Thermal Spray Technology, 2010. 19 [1-2]: p.148-155.

    [26] Steinke T., Sebold D., Mack D.E., Vaßen R., Stöver D., A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surface and Coatings Technology, 2010. 205: p. 2287-2295.

    [27] Drexler J.M., Aygün A., Li D., Vaßen R., Steinke T., Padture N.P., Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surface and Coatings Technology, 2010. 204: p. 2683- 2688.

    [28] Mohan P., Patterson T., Yao B., Sohn Y., Degradation of Thermal Barrier Coatings by Fuel Impurities and CMAS: Thermochemical Interactions and Mitigation Approaches. Journal of Thermal Spray Technology, 2010. 19 [1-2]: p. 156-167.

    [29] Gledhill A.D., Reddy K.M., Drexler J.M., Shinoda K., Sampath S., Padture N.P., 86 Mitigation of damage from molten fly ash to air-plasma-sprayed thermal barrier coatings. Materials Science and Engineering A, 2011. 528: p. 7214-7221.

    [30] Chen X., Calcium–magnesium–alumina–silicate (CMAS) delamination mechanisms in EB-PVD thermal barrier coatings. Surface & Coatings Technology, 2006. 200: p. 3418– 3427.

    [31] Harder B.J., Ramirez-Rico J.J., Almery J.D., Lee K.N., Faber K.T., Chemical and Mechanical Consequences of Environmental Barrier Coating Exposure to Calcium– Magnesium–Aluminosilicate. Journal of the American Ceramic Society, 2011. 94 [1]: p. 178–185.

    [32] Mannich P., Braue W., Uwe Schulz U., High-Temperature Corrosion of EB-PVD Yttria Partially Stabilized Zirconia Thermal Barrier Coatings with an Artificial Volcanic Ash Overlay. Journal of the American Ceramic Society, 2011. 94 [3]: p. 925–931.

    [33] Wu J., Guo H., Gao Y., Gong S., Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. Journal of the European Ceramic Society, 2011. 31: p. 1881–1888.

    [34] Krämer S., Yang J., Levi C.G., Infiltration-Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts. Journal of the American Ceramic Society, 2008. 91 [2]: p. 576–583.

    [35] Wellman R., Whitman G., Nicholls J.R., CMAS corrosion of EB PVD TBCs: Identifying the minimum level to initiate damage. International Journal of Refractory Metals & Hard Materials, 2010. 28: p. 124–132.

    [36] Hannink, R.H.J., Kelly P.M., Muddle B.C., Transformation toughening in zirconia containing ceramics. Journal of the American Ceramic Society, 2000. 83 [3]: p. 461- 487.

    [37] Krogstad J., Kramer K, Lipkin D.M., Johnson C.A., Mitchell D.R.G., Cairney J.M., Levi C.G., Phase Stability of t′‐Zirconia‐Based Thermal Barrier Coatings: Mechanistic Insights, Journal of The American Ceramic Society, 2011. 94 [S1] S168–S177 (2011).

    [38] Vaßen R., Traeger F., Stöver D., New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems. International Journal of Applied Ceramic Technology, 2004. 1 [4]: p. 351-61.

    [39] Cao X.Q., Vaßen R., Stöver D., Ceramic Materials for Thermal barrier coatings. Journal of the European Ceramic Society, 2004. 24: p. 1-10.

    [40] Morgan P.E.D., Marshall D.B., Ceramic Composites of Monazite and Alumina. Journal of the American Ceramic Society, 1995. 78 [6]: p.1553-63.

    [41] Girolamo G., Blasi C., Pilloni L., Schioppa M., Microstructural and thermal properties of plasma sprayed mullite coatings. Ceramics International, 2010. 36: p. 1389–1395.

    [42] Nadler M.R., Fitzsimmons E.S., Preparation and Properties of Calcium Zirconate. Journal of the American Ceramic Society, 1955. 38 [6]: p. 214-217.

    [43] Vishnevskii I.I., Skripak V.N., Thermal Conductivity of Some Oxygen Compounds of Zirconium and Hafnium. Refractories and Industrial Ceramics, 1970. 11 [11-12]: p. 693-694.

    [44] SrZrO3 Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition – 2012" in SpringerMaterials (https://materials.springer.com/isp/crystallographic/docs/sd_0543582). 

    [45] Ma W., Mack D.E., Vaßen R., Stöver D., Perovskite-Type Strontium Zirconate as a New Material for Thermal Barrier Coatings. Journal of the American Ceramic Society, 2008. 91 [8]: p. 2630–2635.

    [46] Geisler T., Schaltegger U., Tomaschek F., Re-equilibration of Zircon in Aqueous Fluids and Melts. Elements, 2007. 3: p. 43–50.

    [48] Kaiser A., Lobert M., Telle R., Thermal stability of Zircon (ZrSiO4). Journal of the European Ceramic Society, 2008. 28: p. 2199–2211.

    [49] Lehmann H., Pitzer D., Pracht G., Vaßen R., Stöver D., Thermal Conductivity and Thermal Expansion Coefficients of the Lanthanum Rare-Earth-Element Zirconate System. Journal of the American Ceramic Society, 2003. 86 [8]: p. 1338-44.

    [50] Liu Z., Ouyang J., Zhou Y., Li J., Xia X., Densification, Structure, and Thermophysical Properties of Ytterbium–Gadolinium Zirconate Ceramics. International Journal of Applied Ceramic Technology, 2009. 6 [4]: p. 485–491.

    [51] Ma W., Mack D., Malzbender J., Vaßen R., Stöver D., Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings. Journal of the European Ceramic Society, 2008. 28: p.3071–3081.

    [52] Ahlborg N.L., Zhu D., Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings,  NASA/TM—2013-218091paper prepared for the 40th International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2013), Glenn Research Center Cleveland, Ohio 44135, November 2013.

    [53] Schulz U., Braue W., Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits, Surface & Coatings Technology 235 (2013) 165–173.

    [54] Steinke T., Sebold D., Mack D.E., Vaßen R., Stöver D., A novel test approach for plasma-sprayed coatings tested simultaneously under CMAS and thermal gradient cycling conditions. Surface and Coatings Technology, 2010. 205: p. 2287-2295.