Pen Academic Publishing   |  ISSN: 2602-4810   |  e-ISSN: 2602-4535

Original article | International Journal of Innovative Approaches in Science Research 2019, Vol. 3(1) 1-8

In-Silico Analysis of SCARECROW Genes in Olive (Olea europaea L.)

Fatih Sezer

pp. 1 - 8   |  DOI:   |  Manu. Number: MANU-1902-23-0001.R1

Published online: March 29, 2019  |   Number of Views: 40  |  Number of Download: 233


The Olive (Olea europaea L.) is a Mediterranean crop tree with great economic importance and understanding molecular mechanisms that control developmental processes like adventitious rooting will benefit various aspects of olive tree development research. SCARECROW (SCR) genes are reported to be essential for asymmetric division of the cortex/endodermis progenitor cell in the root. They also have diverse roles through plant development. Thus, this study aimed to identify SCR genes in Olive. With this study we investigated all GRAS family proteins in Olive and further extracted SCR proteins in Olive genome. With this study, we report SCR genes in olive for the first time and provide analysis of their structure with bioinformatic tools. Phylogenetic tree revealed that all 8 major sub-families of GRAS were present in olive genome and some other sub-families like SCL18, SCL3 and SCL28 were also present. A. thaliana SCR (AT3G54220) was grouped with 2 unique olive sequences (XP_022893717.1, XP_022881217.1). Both sequences showed a 2 exon, 1 intron structure and contained the characteristic GRAS domain. Promoter regions contained several light and low temperature motifs. Auxin, gibberellin and abscisic acid response elements were present within these regions. Promoter regions of all olive SCR also contained MYB transcription factor recognition and binding sites.

Keywords: SCARECROW, SCR, Olive, GRAS, Transcription factor

How to Cite this Article?

APA 6th edition
Sezer, F. (2019). In-Silico Analysis of SCARECROW Genes in Olive (Olea europaea L.) . International Journal of Innovative Approaches in Science Research, 3(1), 1-8. doi: 10.29329/ijiasr.2019.187.1

Sezer, F. (2019). In-Silico Analysis of SCARECROW Genes in Olive (Olea europaea L.) . International Journal of Innovative Approaches in Science Research, 3(1), pp. 1-8.

Chicago 16th edition
Sezer, Fatih (2019). "In-Silico Analysis of SCARECROW Genes in Olive (Olea europaea L.) ". International Journal of Innovative Approaches in Science Research 3 (1):1-8. doi:10.29329/ijiasr.2019.187.1.

  1. Ambawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: An overview. Physiology and Molecular Biology of Plants, 19(3), 307–321. [Google Scholar] [Crossref] 
  2. Bolle, C., Koncz, C., & Chua, N. H. (2000). PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes and Development, 14(10), 1269–1278. [Google Scholar] [Crossref] 
  3. Di Laurenzio, L., Wysocka-Diller, J., Malamy, J. E., Pysh, L., Helariutta, Y., Freshour, G., … Benfey, P. N. (1996). The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 86(3), 423–433. [Google Scholar] [Crossref] 
  4. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. In J. Walker (Ed.), The Proteomics Protocols Handbook (pp. 571–607). Humana Press. [Google Scholar] [Crossref] 
  5. Grimplet, J., Agudelo-Romero, P., Teixeira, R. T., Martinez-Zapater, J. M., & Fortes, A. M. (2016). Structural and Functional Analysis of the GRAS Gene Family in Grapevine Indicates a Role of GRAS Proteins in the Control of Development and Stress Responses. Frontiers in Plant Science, 7(March). [Google Scholar] [Crossref] 
  6. Huang, W., Xian, Z., Kang, X., Tang, N., & Li, Z. (2015). Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biology, 15(1), 209. [Google Scholar] [Crossref] 
  7. Kamiya, N., Itoh, J. I., Morikami, A., Nagato, Y., & Matsuoka, M. (2003). The SCARECROW gene’s role in asymmetric cell divisions in rice plants. Plant Journal, 36(1), 45–54. [Google Scholar] [Crossref] 
  8. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. [Google Scholar] [Crossref] 
  9. Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. [Google Scholar] [Crossref] 
  10. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., … Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325–327. [Google Scholar] [Crossref] 
  11. Lim, J., Jung, J. W., Chae, E. L., Lee, M. H., Bong, J. K., Kim, M., … Benfey, P. N. (2005). Conservation and diversification of SCARECROW in maize. Plant Molecular Biology, 59(4), 619–630. [Google Scholar] [Crossref] 
  12. Liu, X., & Widmer, A. (2014). Genome-wide Comparative Analysis of the GRAS Gene Family in Populus, Arabidopsis and Rice. Plant Molecular Biology Reporter, 32(6), 1129–1145. [Google Scholar] [Crossref] 
  13. Marchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., … Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(D1), D222–D226. [Google Scholar] [Crossref] 
  14. Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes and Development, 11(23), 3194–3205. [Google Scholar] [Crossref] 
  15. Pysh, L. D., Wysocka-Diller, J. W., Camilleri, C., Bouchez, D., & Benfey, P. N. (1999). The GRAS gene family in Arabidopsis: Sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant Journal, 18(1), 111–119. [Google Scholar] [Crossref] 
  16. Silverstone, A. L. (1998). The Arabidopsis RGA Gene Encodes a Transcriptional Regulator Repressing the Gibberellin Signal Transduction Pathway. The Plant Cell Online, 10(2), 155–170. [Google Scholar] [Crossref] 
  17. Song, X. M., Liu, T. K., Duan, W. K., Ma, Q. H., Ren, J., Wang, Z., … Hou, X. L. (2014). Genome-wide analysis of the GRAS gene family in chinese cabbage (brassica rapa ssp. pekinensis). Genomics, 103(1), 135–146. [Google Scholar] [Crossref] 
  18. Tian, C., Wan, P., Sun, S., Li, J., & Chen, M. (2004). Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Molecular Biology, 54(4), 519–532. [Google Scholar] [Crossref] 
  19. Torres-Galea, P., Hirtreiter, B., & Bolle, C. (2013). Two GRAS Proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, Function Cooperatively in Phytochrome A Signal Transduction. Plant Physiology, 161(1), 291–304. [Google Scholar] [Crossref] 
  20. Torres-Galea, P., Huang, L. F., Chua, N. H., & Bolle, C. (2006). The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses. Molecular Genetics and Genomics, 276(1), 13–30. [Google Scholar] [Crossref] 
  21. Zhang, Z.-L., Ogawa, M., Fleet, C. M., Zentella, R., Hu, J., Heo, J.-O., … Sun, T. (2011). SCARECROW-LIKE 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proceedings of the National Academy of Sciences, 108(5), 2160–2165. [Google Scholar] [Crossref]