International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2018, Vol. 2(4) 126-139

Phytochemical Characterization and Antimicrobial Potentialities of Two Medicinal plants, Chamaemelum nobile (L.) All and Matricaria chamomilla (L.)

Kaissa Boudıeb, Sabrina Ait Slimane - Ait Kaki, Hakima Oulebsir-Mohandkaci & Amel Bennacer

pp. 126 - 139   |  DOI: https://doi.org/10.29329/ijiasr.2018.173.2

Published online: December 26, 2018  |   Number of Views: 340  |  Number of Download: 872


Abstract

Objective of the study was to evaluate the phytochemical characterization and antimicrobial effectiveness of two medicinal plants belonging to the Asteraceae family, growing spontaneously in the region of Boumerdes (Northeast Algeria) namely Chamaemelum nobile (L.) All and Matricaria chamomilla (L.). For this purpose, it was proposed to optimize the extraction parameters of the phenolic compounds of the aerial parts of two chosen species. The first step was intended to study the effect of different extraction solvents (water, chloroform and methanol) on the contents of different metabolites of these species. The qualitative screening of the aerial part of chamomile allowed to highlight different families of chemical compounds namely; flavonoids, total tannins, condensed tannins, gallic tannins, alkaloids, saponosides, glucosides, mucilages and total absence of anthocyanins and starch. This was confirmed by a quantitative analysis based on the determination of total phenolic compounds by spectrophotometry in the presence of the Folin-Ciocalteu reagent determined from the calibration curve of gallic acid. The results showed that the water was the best extraction solvent. At the second stage of our study, antimicrobial activity of the extracts was determined on six microbial strains such as Staphylococcus aureus, Bacillus thuringiensis, Escherichia coli and Fusarium sp., according to the disk diffusion method, and gave zones of inhibition ranging from 7 to 15 mm. Thus, the extracts had a moderately inhibitory activity and have reacted positively on at least one of the microbial strains tested with the exception of the fungal flora. However, the methanolic extract of M. chamomilla revealed a strong activity against to Pseudomonas sp. with an inhibition zone estimated at 22.5 mm.

Keywords: Chamaemelum nobile, Matricaria chamomilla - Phytochemical Screening - Polyphenols - Antimicrobial activity


How to Cite this Article

APA 6th edition
Boudieb, K., Kaki, S.A.S.-.A., Oulebsir-Mohandkaci, H. & Bennacer, A. (2018). Phytochemical Characterization and Antimicrobial Potentialities of Two Medicinal plants, Chamaemelum nobile (L.) All and Matricaria chamomilla (L.) . International Journal of Innovative Approaches in Science Research, 2(4), 126-139. doi: 10.29329/ijiasr.2018.173.2

Harvard
Boudieb, K., Kaki, S., Oulebsir-Mohandkaci, H. and Bennacer, A. (2018). Phytochemical Characterization and Antimicrobial Potentialities of Two Medicinal plants, Chamaemelum nobile (L.) All and Matricaria chamomilla (L.) . International Journal of Innovative Approaches in Science Research, 2(4), pp. 126-139.

Chicago 16th edition
Boudieb, Kaissa, Sabrina Ait Slimane - Ait Kaki, Hakima Oulebsir-Mohandkaci and Amel Bennacer (2018). "Phytochemical Characterization and Antimicrobial Potentialities of Two Medicinal plants, Chamaemelum nobile (L.) All and Matricaria chamomilla (L.) ". International Journal of Innovative Approaches in Science Research 2 (4):126-139. doi:10.29329/ijiasr.2018.173.2.

References
  1. Belhattab, R., (2007). Chemical composition and antioxidant, antifungal and anti-aflatoxinogenic activity of extracts of Origanum glandulosum Desf. and Marrubium vulgare L (Lamiaceae family). Ph.D. thesis Dept. Biology, UFA Setif. Algéria.  [Google Scholar]
  2. Billing, J., Sherman, P.W., (1998). Antimicrobial functions of spices: why some like it hot. Rev Biol. 73(1):3-49. [Google Scholar]
  3. Boizot, N., and Charpentier, J.P., (2006). Rapid method for evaluating the content of phenolic compounds in the organs of a fruit tree. The technical specifications of INRA. 79 - 82. [Google Scholar]
  4. Bonnaillie, C., Salacs, M., Vassiliova, E. and Saykova, I., (2012). Study of the extraction of phenolic compounds from peanut films (Arachishypogaea L.). Industrial Engineering Journal. Vol. 7. 35-45.  [Google Scholar]
  5. Cavallo, J.D., Chardon, H., Chidias, C., Choutel, P. and Courvalin, P., (2006). Communique of the French committee of antibiogram. French Society of Microbiology.2nd Ed. 65-145. [Google Scholar]
  6. El Rhaffari, L., Zaid, A., (2002). Phytotherapy practice in southeastern Morocco (Tafilalet): empirical knowledge for a renovated pharmacopoeia. Paris (FRA); Metz: IRD; SFE, 293-318. ISBN2-7099-1504-9. [Google Scholar]
  7. Escribano-Bailon, M.T., Santos-Buelga, C., (2003). Polyphenols Extraction from Foods. in: Methods in Polyphenol Analysis. Royal Society of Chemistry, Cambridge, United Kingdom, 1–16. 5.  [Google Scholar]
  8. Falleh, H., Kousri, R., Chaieb, K., Karray- Bouraoui, N., Trabelsi, N., boulaaba, M. and Abdelly, C., (2008). Phenolic composition of Cynara cardunculus L. Organs, and their biological activities .C.R.Biologies.331:372-379. [Google Scholar]
  9. Ghaedi, M., Naghiha, R., Jannesar, R., dehghanian, N., and Mirtamizdoust, B., (2015). Antibacterial and antifungal activity of flower extracts of Urtica dioica, Chamaemelum nobile and Salvia officinalis: Effects of Zn [OH]2 nanoparticles and Hp-2-minh on their property. Journal of Industrial and Engineering Chemistry.Volume 32, 353-359. [Google Scholar]
  10. Gopal Rao, G., (1999). Risk Factors for the Spread of Antibiotic-Resistant Bacteria. Drugs. 55:323-330. [Google Scholar]
  11. Haghi, G., Hatami, A., Safaei, A. and Mehran, M., (2014). Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Research in Pharmaceutical Sciences, February; 9(1): 31-37. [Google Scholar]
  12. Hammer, K.A., Carson, C.F., Riley, T.V., (1999). Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86: 985-990.  [Google Scholar]
  13. Harborne, J.B., (1973). Phytochemical methods, London. Chapman and Hall, Ltd. pp. 49-188. [Google Scholar]
  14. Hayouni, E., Abedrabba, M., Bouix, M. and Hamdi, M., (2007). The Effect of Solvents and Extraction Method on the Phenolic Compounds Contents and Biological Activities in Vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. Fruit Extract. Journal of Food Chemistry, 105, 1126-1134. [Google Scholar]
  15. Jianping, Z., Shabana, I. K., Mei, W., Yelkaira, V., Min Hye, Y., Bharathi, A., Yan-Hong, W., Cristina A., Troy, J. S., and  Ikhlas, A. K.,  (2014). Octulosonic Acid Derivatives from Roman Chamomile (Chamaemelum nobile) with Activities against Inflammation and Metabolic Disorder. J. Nat. Prod., 2014, 77 (3), 509–515. [Google Scholar]
  16. Jokić, S., Velić, D., Bilić, M., Bucić-Kojić, A., Plan, M. and Tomas, S., (2010). Modelling of the Process of Solid-Liquid Extraction of Total Polyphenols from Soybeans. J. Food Sci. vol. 28.  206- 212.  [Google Scholar]
  17. Jones, W. P. and Kinghorn, A. D., (2005). Extraction of Plant Secondary Metabolites, Natural Products Isolation, Vol. 20, No. 2, 323-351. [Google Scholar]
  18. Koffi, E., Sea, T., Dodehe, Y. and Soro, S., (2010). Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants. J. Animal & Plant Sci. Vol. 5.  550-558. [Google Scholar]
  19. Li, B. B., Smith, B., Hossain, Md. M., (2006). Extraction of phenolics from citrus peels. I. Solvent extraction method. Separation and Purification Technology. 48, 182-188. [Google Scholar]
  20. Macheix, J.J., Fleuriet, A. and Jay-Allemand, C., (2005). Phenolic compounds in plants: an example of economically important secondary metabolites. Ed. Polytechnic presses and universities, Lausanne, 4-5.  [Google Scholar]
  21. Majhenic, L., Kerget, M.S. and Knez, Z., (2007) Antioxidant and antimicrobial activity of guarana seed extracts. Food Chemistry. 104, 1258–1268. [Google Scholar]
  22. Meena, M.R. and Sethiv. (1994). Antimicrobial activity of essential oils from species. Journal of food Sci. Tech. Mysore, 31(1): 68-70. [Google Scholar]
  23. Morales-Soto, A., Segura-Carretero, A. and Fernández-Gutiérrez, A., (2010). Phenolic-Compound-Extraction Systems for Fruit and Vegetable Samples. Molecules. Vol. 15. pp. 8813- 8826. [Google Scholar]
  24. Moussaïd, M., Guillot, E.G., Moreau, M., Fehrenbach, J., Chabiron, O. and Lemercier, S., (2012). Traffic Instabilities in Self-Organized Pedestrian Crowds. PLoSComputBiol 8(3): 1002442.  [Google Scholar]
  25. Ojeil, A., El Darra, N., El Hajj, Y., Bou Mouncef, P., Rizk, T.J., and Maroun R.G., (2010). Identification and characterization of phenolic compounds extracted from Ksara Castle grapes. Lebanese Science Journal, 11: 117-131.  [Google Scholar]
  26. Oulebsir-Mohandkaci, H., Ait Kaki, S., and Behidj-Benyounes, N., (2016). Phytochemical Study and Evaluation of Antimicrobial, Antioxidant and Insecticidal Activity of Essential Oils and Polyphenols of Bitter Orange (Citrus Aurantium L.). Int Journal of Advances in Chemical Engg & Biological Sciences (IJACEBS) Vol. 3, Issue 1, 163-167, ISSN 2349-1507 EISSN 2349-1515. [Google Scholar]
  27. Paris, R. and Nothis, A., (1978). Medicinal plant, phytotérapie. Tome I. Ed Masson, Paris. 102-107. [Google Scholar]
  28. Ponce, A.G., Fritz, R., Del Valle, C.E., and Roura, S.I., (2003). Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. Lebensmittel-Wissenschaft und -Technologie, 36: 679–684. [Google Scholar]
  29. Revilla, E., Garcia-Beneytez, E., Gabello, F., Martin-ortega, M. and Ryan, J. M.,  (2001).Value of high performanance liquid chromatography analysis of anthocyanins in then differentiation of red group cultivars and red wines made from them. Journal of chromatography, 915:53-60. [Google Scholar]
  30. Teixeira da Silva, J. A., (2004). Mining the essential oils of the Anthemideae. Afr. J. Biotechnol. 3: 706- 720. [Google Scholar]
  31. Trease, G.E., and Evans, W.C., (1989). Pharmacognsy. 11th edn. Brailliar Tiridel Can. Macmillian publishers. [Google Scholar]
  32. Tsai, P.J., Wua, S.C. and Cheng, Y.K., (2008). Role of polyphenols in antioxidant capacity of napier grass from different growing seasons. Food Chemistry, 106, 27–32  [Google Scholar]
  33. Tumbas, V.T., Ćetkovic, G.S., Djilas, S.M., Canadanovic-Brunet, J.M., Vulic, J.J., Knez, Z., (2010). Antioxidant activity of mandarin (Citrus reticulata) peel. Biblid. 40, 195-203. [Google Scholar]
  34. Wong C.C., Li H.B., Cheng k.w., and Chen, F., (2006). Systematic survey of Antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chem. 97:705-711.  [Google Scholar]
  35. Zang, D. and Hamauru, Y., (2003). Phenolic compounds, ascorbic acid, carotenoids and antioxidant properties of grebe, red and yellow bell peppers. Food, Agric., Environ. 1 (2), 22–27. [Google Scholar]