International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2018, Vol. 2(1) 1-8

Human Endogenous Retroviruses

Buket Çakmak Güner & Nermin Gözükırmızı

pp. 1 - 8   |  DOI: https://doi.org/10.29329/ijiasr.2018.132.1

Published online: March 29, 2018  |   Number of Views: 288  |  Number of Download: 872


Abstract

Human Endogenous retroviruses (HERVs) occupy nearly 8% of human genome. They are thought to be remnants of retroviruses.  These integrated elements have gag, pol and env coding regions. The genome order of 5 ’LTR-gag-pro-pol-env-LTR 3’ is completely conserved among known retroviruses and endogenous retroviruses. A complete LTRs consists of untranslated 5’ (U5), repeat (R) and untranslated 3’ (U3) regions. ERVs have the potential to proliferate within a genome.  Due to the nonsense mutations, methylations and deletions, most families of HERV lost their coding regions and therefore could not produce functional proteins. Most of HERVs are structurally incomplete with deletions and insertions. Although human genomehave many protective mechanisms, there are many transcriptionally active transposons and endogenous retroviruses in the human genome. Given their nature within the genome, HERVs have potential for genetic disorders, cancer, autoimmunity and neurological diseases. There are many studies investigating the association ofHERVs with  diseases. In this review, we  give a short summary from a few of  of these studies.

Keywords: Human endogenous retroviruses, human diseases, HERV-K, HERV-E, HERV-W.


How to Cite this Article

APA 6th edition
Guner, B.C. & Gozukirmizi, N. (2018). Human Endogenous Retroviruses . International Journal of Innovative Approaches in Science Research, 2(1), 1-8. doi: 10.29329/ijiasr.2018.132.1

Harvard
Guner, B. and Gozukirmizi, N. (2018). Human Endogenous Retroviruses . International Journal of Innovative Approaches in Science Research, 2(1), pp. 1-8.

Chicago 16th edition
Guner, Buket Cakmak and Nermin Gozukirmizi (2018). "Human Endogenous Retroviruses ". International Journal of Innovative Approaches in Science Research 2 (1):1-8. doi:10.29329/ijiasr.2018.132.1.

References
  1. Bannert N, Kurth R, 2004, Retroelements and the human genome: new perspectives on an old relation, Proc Natl Acad Sci. 101, 14572–14579. [Google Scholar]
  2. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, Burt, A, et al., 2004, Long-term reinfection of the human genome by endogenous retroviruses. Proc. Natl. Acad. Sci. 101, 4894–4899. [Google Scholar]
  3. Best S, Le Tissier P, Towers G, Stoye JP, 1996, Positional cloning of the mouse retrovirus restriction gene Fv1, Nature, 382:826829. [Google Scholar]
  4. Blanco P, Shlumukova M, Sargent CA, et al, 2002, Divergent outcomes of intra-chromosomal recombination on the human Y chromosome: male infertility and recurrent polymorphism, J Med Genet; 37:752–8. [Google Scholar]
  5. Blikstad V, Benachenhou F, Sperber GO, Blomberg J, 2008, Evolution of human endogenous retroviral sequences: a conceptual account, Cellular and Molecular Life Sciences, 65:3348-65. [Google Scholar]
  6. Buzdin A, 2007, Human-specific endogenous retroviruses, Scientific World Journal 7, 1848–1868. [Google Scholar]
  7. Buzdin A, Kovalskaya-Alexandrova E, Gogvadze E, and Sverdlov E, 2006, At least 50% of human-specific HERV-K (HML-2) long terminal repeats serve in vivo as active promoters for host nonrepetitive DNA transcription, J. Virol. 80, 10752–10762. [Google Scholar]
  8. Buzdin AA, Prassolov V, Garazha AV, 2017, Friends-Enemies: Endogenous retroviruses are major trascriptional regulators of human DNA, Front in Chem 5. [Google Scholar]
  9. Cakmak B, Marakli S, Gözükirmizi N, 2017, Sukkula retrotransposon movements in the human genome, Biotechnology & Biotechnological Equipment 31, 900-905. [Google Scholar]
  10. Denner, J, 2016, Expression and function of endogenous retroviruses in the placenta. APMIS Acta Pathol. Microbiol. Immunol. Scand, 124, 31–43. [Google Scholar]
  11. Douville R, Liu J, Rothstein J, Nath A, 2011, Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis, Ann. Neurol. 69 (1), 577-587. [Google Scholar]
  12. Downey R.F, Sullivan FJ, Wang-Johanning F, Ambs S, Giles FJ, Glynn SA, 2015, Human endogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice? Int. J. Cancer 137, 1249–1257. [Google Scholar]
  13. Elkina MA, Erkenov TA, Glazko VI, 2015, Mobile genetic elements as a tool for the analysis of genetic differentiation of varieties of cultivated plants and breeds of farm animals. IJRSR 6:5893-5900. [Google Scholar]
  14. Gonzalez-Cao M, Iduma P, Karachaliou N, Santarpia M, Blanco J, Rosell R, 2016, Human endogenous retroviruses and cancer. Cancer Biol. Med. 13, 483–488. [Google Scholar]
  15. Griffiths DJ, 2001, Endogenous retroviruses in the human genome sequence, Genome Biology 2 (6). [Google Scholar]
  16. Guliev M, Yilmaz S, Sahin K, et al, 2013, Human endogenous retrovirus H (Herv-H) genome insertion variations in humans, Mol Med Rep. 7:1305-1309. [Google Scholar]
  17. Hayward A, Cornwallis CK, Jern P, 2015, Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proc Natl Acad Sci, 112:464–9. [Google Scholar]
  18. Hohn O, Hanke K, Bannert N, 2013, HERV-K(HML-2), the best preserved family of HERVs: endogenization, expression, and implications in health and disease, Front Oncol 3:246. [Google Scholar]
  19. Hurst TP, and Magiorkinis G, 2017, Epigenetic control of human endogenous retrovirus expression: Focus on Regulation of Long-Terminal Repeats (LTRs), Viruses 9, 130. [Google Scholar]
  20. Jern P, Coffin JM, 2008, Effects of retroviruses on host genome function. Annu Rev Genet. 42:709–32. [Google Scholar]
  21. Jern P, Sperber GO, Blomberg J, 2005, Definition and variation of human endogenous retrovirus. H Virology, 327:93-110. [Google Scholar]
  22. Kremer D, Glanzman R, Traboulsee A, Nath A, Groc L, Horwitz M, Göttle P et al, 2017, Prehistoric enemies within: The contribution of human endogenous retroviruses to neurological diseases. Meeting report: “Second International Workshop on Human Endogenous Retroviruses and Disease. Mult Scler Relat Disord 15: 18-23. [Google Scholar]
  23. Lenasi T, Contreras X, and Peterlin BM, 2010, Transcription, splicing and transport of retroviral RNA. In: BANNERT, N. & KURTH, R. (eds.) Retroviruses. Molecular Biology, Genomics and Pathogenesis. Norforlk: Caister Academic Press. [Google Scholar]
  24. Lerat E, Semon M,2007, Influence of the transposable element neighborhood on human gene expression in normal and tumor tissue, Gene 396, pp.303–11. [Google Scholar]
  25. Lettini AA, Guidoboni M, Fonsatti E, Anzalone L, Cortini E, Maio M et al, 2007, Epigenetic remodelling of DNA in cancer, Histology and Histopathology 22:1413-24. [Google Scholar]
  26. Li M, Radvanyi LG, Yin B, Li J, Chivukula R, Lin K, Lu Y, et al, 2017, Down-regulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. AACR. [Google Scholar]
  27. Mamedov I, Lebedev Y, Hunsmann G, Khusnutdinova E, and Sverdlova E, 2004, A rare event of insertion polymorphism of a HERV-K LTR in the human genome, Genomics 84: 596-599. [Google Scholar]
  28. Mariani-Costantini R, Horn TM, Callahan R, 1989, Ancestry of a human endogenous retrovirus family. J Virol 63:4982–5. [Google Scholar]
  29. Mayer J, Blomberg J, and Seal R, 2011, A revised nomenclature for transcribed human endogenous retroviral loci, Mobile DNA. [Google Scholar]
  30. Menendez L, Benigno BB, McDonald JF,2004, L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas. Mol. Cancer 3, 12. [Google Scholar]
  31. Nelson PN, Roden D, Nevill A, Freimanis GL, Trela M, Ejtehadi HD, Bowman S, Axford J, Veitch AM, Tugnet N, Rylance PB, 2014, Rheumatoid arthritis is associated with IgG antibodies to human endogenous retrovirus gag matrix: a potential pathogenic mechanism of disease? J Rheumatol 41(10): 1952–1960. [Google Scholar]
  32. Ohnuki M, Tanabe K, Sutou K, Teramoto I, Sawamura Y, Narita M, et al, 2014, Dynamic regulation of human endogenous retroviruses mediates factor-induced reprogramming and differentiation potential, Proc. Natl. Acad. Sci 111, 12426–12431.  [Google Scholar]
  33. Paces J, Huang YT, Paces V, Ridl Y, and Chang CM, 2013, New insight into transcription of human endogenous retroviral elements, N Biotechnol 30 (3): 314-318. [Google Scholar]
  34. Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, et al, 1997, molecular identification of a novel retrovirus repeatedly isolted from patients with multiple sclerosis, Proc Natl Acad Sci, 7583-7588. [Google Scholar]
  35. Reis BS, Jungbluth AA, Frosina D, Holz M, Ritter E, Nakayama E, Ishida T, Obata Y, Carver B, Scher H, Scardino PT et al, 2013, Prostate cancer progression correlates with increased humoral immune response to a human endogenous retrovirus GAG protein, Clin Cancer Res 19(22):6112–6125. [Google Scholar]
  36. Schumann GG, Gogvadze EV, Osanai-Futahashi M, Kuroki A, Münk C, Fujiwara H, et al, 2010, Unique functions of repetitive transcriptomes, Int. Rev. Cell Mol. Biol. 115–188. [Google Scholar]
  37. Seal RL, Gordon SM, Lush MJ, Wright MW, Bruford EA, 2011, genenames.org: the HGNC resources in 2011. Nucleic Acids Res 39. [Google Scholar]
  38. Sotgiu S, Mameli G, Serra C, Zarbo IR, Arru G, Dolei A, 2010, Multiple sclerosis-associated retrovirus and progressive disability of multiple sclerosis, Mult. Scler. 16, 1248-1251. [Google Scholar]
  39. Stengel S, Fiebig U, Kurth R, Denner J, 2010, Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes. Chromosomes Cancer 49, 401–411. [Google Scholar]
  40. Stoye JP, 2001, Endogenous retroviruses: still actie all these years? Current Biology 11: R914-6. [Google Scholar]
  41. Suntsova M, Garazha A, Ivanova A, Kaminsky D, Zhavoronkov A, and Buzdin A, 2015, Molecular functions of human endogenous retroviruses in health and disease, Cell. Mol. Life Sci. 72, 3653–3675. [Google Scholar]
  42. Suntsova M, Gogvadze EV, Salozhin S, Gaifullin N, Eroshkin F, Dmitriev SE, et al, 2013, Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH. Proc. Natl. Acad. Sci 110, 19472–19477. [Google Scholar]
  43. Takahashi Y, Harashima N, Kajigaya S, Yokoyama H, Cherkasova E, McCoy JP et al, 2008, Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells, J Clin Investig 118(3):1099–1109. [Google Scholar]
  44. Van Horssen J, van der Pol S, Nijland P, Amor S, Perron H, 2016, Human endogenous retrovirus W in brain lesions: rationale for targeted therapy in multiple sclerosis, Mult. Scler. Relat. Disord. 8, 11-18. [Google Scholar]
  45. Volkman, HE, Stetson DB, 2014, The enemy within: Endogenous retroelements and autoimmune disease Nat. Immunol 15, 415–42. [Google Scholar]
  46. Yi JM, Kim HM, Kim HS, 2004, Expression of the human endogenous retrovirus HERVW family in various human tissues and cancer cells. Journal of General Virology 85, pp.1203–10 [Google Scholar]