- Ali, E., Raza, M. A., Cai, M., Hussain, N., Shahzad, A. N., Hussain, M., ... & Sun, P. (2020). Calmodulin-binding transcription activator (CAMTA) genes family: Genome-wide survey and phylogenetic analysis in flax (Linum usitatissimum). Plos one, 15(7), e0236454. [Google Scholar]
- Bouché, N., Scharlat, A., Snedden, W., Bouchez, D., & Fromm, H. (2002). A novel family of calmodulin-binding transcription activators in multicellular organisms. Journal of Biological Chemistry, 277(24), 21851-21861. [Google Scholar]
- Büyük, İ., İlhan, E., Şener, D., Özsoy, A. U., & Aras, S. (2019). Genome-wide identification of CAMTA gene family members in Phaseolus vulgaris L. and their expression profiling during salt stress. Molecular biology reports, 46(3), 2721-2732. [Google Scholar]
- D’Angeli, S., Malhó, R., & Altamura, M. M. (2003). Low-temperature sensing in olive tree: calcium signalling and cold acclimation. Plant Science, 165(6), 1303-1313. [Google Scholar]
- Doherty, C. J., Van Buskirk, H. A., Myers, S. J., & Thomashow, M. F. (2009). Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. The Plant Cell, 21(3), 972-984. [Google Scholar]
- Du, L., Yang, T., Puthanveettil, S. V., & Poovaiah, B. W. (2011). Decoding of calcium signal through calmodulin: calmodulin-binding proteins in plants. In Coding and decoding of calcium signals in plants (pp. 177-233). Springer, Berlin, Heidelberg. [Google Scholar]
- Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, 32(5), 1792-1797. [Google Scholar]
- Fang, H., Wang, P., Ye, F., Li, J., Zhang, M., Wang, C., & Liao, W. (2022). Genome-Wide Identification and Characterization of the Calmodulin-Binding Transcription Activator (CAMTA) Gene Family in Plants and the Expression Pattern Analysis of CAMTA3/SR1 in Tomato under Abiotic Stress. International Journal of Molecular Sciences, 23(11), 6264. [Google Scholar]
- Finkler, A., Ashery-Padan, R., & Fromm, H. (2007). CAMTAs: calmodulin-binding transcription activators from plants to human. FEBS letters, 581(21), 3893-3898. [Google Scholar]
- Gain, H., Nandi, D., Kumari, D., Das, A., Dasgupta, S. B., & Banerjee, J. (2022). Genome‑wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Functional & Integrative Genomics, 22(2), 193-214. [Google Scholar]
- Galon, Y., Finkler, A., & Fromm, H. (2010). Calcium-regulated transcription in plants. Molecular Plant, 3(4), 653-669. [Google Scholar]
- Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, 571-607. [Google Scholar]
- Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., ... & Rokhsar, D. S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic acids research, 40(D1), D1178-D1186. [Google Scholar]
- Kakar, K. U., Nawaz, Z., Cui, Z., Cao, P., Jin, J., Shu, Q., & Ren, X. (2018). Evolutionary and expression analysis of CAMTA gene family in Nicotiana tabacum yielded insights into their origin, expansion and stress responses. Scientific reports, 8(1), 1-14. [Google Scholar]
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. [Google Scholar]
- Kim, M. C., Chung, W. S., Yun, D. J., & Cho, M. J. (2009). Calcium and calmodulin-mediated regulation of gene expression in plants. Molecular plant, 2(1), 13-21. [Google Scholar]
- Kim, Y., Park, S., Gilmour, S. J., & Thomashow, M. F. (2013). Roles of CAMTA transcription factors and salicylic acid in configuring the low‐temperature transcriptome and freezing tolerance of A rabidopsis. The Plant Journal, 75(3), 364-376. [Google Scholar]
- Larbi, A., Kchaou, H., Gaaliche, B., Gargouri, K., Boulal, H., & Morales, F. (2020). Supplementary potassium and calcium improves salt tolerance in olive plants. Scientia Horticulturae, 260, 108912. [Google Scholar]
- Leng, X., Han, J., Wang, X., Zhao, M., Sun, X., Wang, C., & Fang, J. (2015). Characterization of a Calmodulin‐binding Transcription Factor from Strawberry (Fragaria× ananassa). The plant genome, 8(2), plantgenome2014-08. [Google Scholar]
- Methenni, K., Abdallah, M. B., Nouairi, I., Smaoui, A., Zarrouk, M., & Youssef, N. B. (2018). Salicylic acid and calcium pretreatments alleviate the toxic effect of salinity in the Oueslati olive variety. Scientia Horticulturae, 233, 349-358. [Google Scholar]
- Nie, H., Zhao, C., Wu, G., Wu, Y., Chen, Y., & Tang, D. (2012). SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant physiology, 158(4), 1847-1859. [Google Scholar]
- Pandey, N., Ranjan, A., Pant, P., Tripathi, R. K., Ateek, F., Pandey, H. P., ... & Sawant, S. V. (2013). CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC genomics, 14(1), 1-23. [Google Scholar]
- Pant, P., Iqbal, Z., Pandey, B. K., & Sawant, S. V. (2018). Genome-wide comparative and evolutionary analysis of calmodulin-binding transcription activator (CAMTA) family in Gossypium species. Scientific reports, 8(1), 1-17. [Google Scholar]
- Popescu, S. C., Popescu, G. V., Bachan, S., Zhang, Z., Seay, M., Gerstein, M., ... & Dinesh-Kumar, S. P. (2007). Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proceedings of the National Academy of Sciences, 104(11), 4730-4735. [Google Scholar]
- Primo-Capella, A., Martínez-Cuenca, M. R., & Forner-Giner, M. Á. (2021). Gene Expression under Short-Term Low Temperatures: Preliminary Screening Method to Obtain Tolerant Citrus Rootstocks. Horticulturae, 7(11), 447. [Google Scholar]
- Reddy, A. S. N., Reddy, V. S., & Golovkin, M. (2000). A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Biochemical and biophysical research communications, 279(3), 762-769. [Google Scholar]
- Reddy, A. S., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. The Plant Cell, 23(6), 2010-2032. [Google Scholar]
- Rugini, E., (1986). Olive (Olea europeae L.). In: Bajaj Y.P.S, Ed. Biotechnology in Agriculture and Forestry, Springer, Heidelberg, pp 253- 267. [Google Scholar]
- Shangguan, L., Wang, X., Leng, X., Liu, D., Ren, G., Tao, R., ... & Fang, J. (2014). Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Molecular biology reports, 41(5), 2937-2949. [Google Scholar]
- Shen, C., Yang, Y., Du, L., & Wang, H. (2015). Calmodulin-binding transcription activators and perspectives for applications in biotechnology. Applied microbiology and biotechnology, 99(24), 10379-10385. [Google Scholar]
- Snedden, W. A., & Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New phytologist, 151(1), 35-66. [Google Scholar]
- Wang, G., Zeng, H., Hu, X., Zhu, Y., Chen, Y., Shen, C., ... & Du, L. (2015). Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant and soil, 386(1), 205-221. [Google Scholar]
- Wei, M., Xu, X., & Li, C. (2017). Identification and expression of CAMTA genes in Populus trichocarpa under biotic and abiotic stress. Scientific reports, 7(1), 1-10. [Google Scholar]
- Yang, T., & Poovaiah, B. W. (2002). A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. Journal of Biological Chemistry, 277(47), 45049-45058. [Google Scholar]
- Yang, T., Peng, H., Whitaker, B. D., & Conway, W. S. (2012). Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC plant biology, 12(1), 1-13. [Google Scholar]
- Yang, T., & Poovaiah, B. W. (2000). An early ethylene up-regulated gene encoding a calmodulin-binding protein involved in plant senescence and death. Journal of Biological Chemistry, 275(49), 38467-38473. [Google Scholar]
- Yang, F., Dong, F. S., Hu, F. H., Liu, Y. W., Chai, J. F., Zhao, H., ... & Zhou, S. (2020). Genome-wide identification and expression analysis of the calmodulin-binding transcription activator (CAMTA) gene family in wheat (Triticum aestivum L.). BMC genetics, 21(1), 1-10. [Google Scholar]
- Yu, C. S., Chen, Y. C., Lu, C. H., & Hwang, J. K. (2006). Prediction of protein subcellular localization. Proteins: Structure, Function, and Bioinformatics, 64(3), 643-651. [Google Scholar]
- Yuan, J., Shen, C., Chen, B., Shen, A., & Li, X. (2021). Genome-Wide Characterization and Expression Analysis of CAMTA Gene Family Under Salt Stress in Cucurbita moschata and Cucurbita maxima. Frontiers in genetics, 12. [Google Scholar]
- Zielinski, R. E. (1998). Calmodulin and calmodulin-binding proteins in plants. Annual review of plant biology, 49(1), 697-725. [Google Scholar]
- Zhang, J., Pan, X. T., Ge, T., Yi, S. L., Lv, Q., Zheng, Y. Q., et al. (2019). Genomewide identification of citrus CAMTA genes and their expression analysis under stress and hormone treatments. J. Hortic. Sci. Biotech. 94, 331–340. doi: 10.1080/ 14620316.2018.1504631 [Google Scholar] [Crossref]
|