International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2022, Vol. 6(2) 34-46

A Computational Study: Structural and Electronic Properties of Some Transition Metal Doped Bilayer Graphene Systems

Özlem Ünlü & İzzet Amour Morkan

pp. 34 - 46   |  DOI:

Published online: June 30, 2022  |   Number of Views: 109  |  Number of Download: 325


Graphene, which is accepted as the main material of nanomaterials, attracts great attention thanks to its applicability in almost every field and its superior properties. The zero-band graphene gap is a problem that scientists must overcome in designing new electronics. Tailoring the electronic properties of graphene systems by making a change in the band gap allow us great advantages. In this study, Intercalation of transition metal (TM) atom to graphene systems as sandwich-like graphene|TM|graphene structures were investigated by  ab initio first principle Density Functional Theory (DFT) computations. GGA with BPW91 basis set were used for DFT calculations. DFT calculations were performed on W, Re, and Os transition metal atoms intercalted between bilayer graphene (BLG). After geometry optimization of graphene|TM|graphene structures, graphene layers doped with nitrogen atoms by substitutional doping for investigation of change in electronic behavior.  The electronic behaviour of metal intercalated BLG structures can be modified by type of transition metal and dopant as a result of charge transfer. Substitutional doping with nitrogen atoms to graphene structures showed a change in local density due to the charge transfer as a result of its extra one electron. Placing a transition metal atom between BLG layers leads to constriction in the band gap with a boost in conductive character.

Keywords: Graphene|TM|graphene , band gap opening, bilayer graphene systems, DFT

How to Cite this Article

APA 6th edition
Unlu, O. & Morkan, I.A. (2022). A Computational Study: Structural and Electronic Properties of Some Transition Metal Doped Bilayer Graphene Systems . International Journal of Innovative Approaches in Science Research, 6(2), 34-46. doi: 10.29329/ijiasr.2022.454.2

Unlu, O. and Morkan, I. (2022). A Computational Study: Structural and Electronic Properties of Some Transition Metal Doped Bilayer Graphene Systems . International Journal of Innovative Approaches in Science Research, 6(2), pp. 34-46.

Chicago 16th edition
Unlu, Ozlem and Izzet Amour Morkan (2022). "A Computational Study: Structural and Electronic Properties of Some Transition Metal Doped Bilayer Graphene Systems ". International Journal of Innovative Approaches in Science Research 6 (2):34-46. doi:10.29329/ijiasr.2022.454.2.

  1. Allen, M. (2009). Honeycomb carbon -- A study of graphene. American Chemical Society, 184. [Google Scholar]
  2. Atomistix Toolkit version 2017.2, S. Q. A. (2017). No Title. Retrieved from [Google Scholar]
  3. Avdoshenko, S. M., Ioffe, I. N., Cuniberti, G., Dunsch, L., & Popov, A. A. (2011). Organometallic Complexes of Graphene: Toward Atomic Spintronics Using a Graphene Web. ACS Nano, 5(12), 9939–9949. [Google Scholar]
  4. Bui, V. Q., Le, H. M., Kawazoe, Y., & Nguyen-Manh, D. (2013). Graphene-Cr-graphene intercalation nanostructures: Stability and magnetic properties from density functional theory investigations. Journal of Physical Chemistry C, 117(7), 3605–3614. [Google Scholar]
  5. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162. [Google Scholar]
  6. Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chemical Reviews, 112(11), 6156–6214. [Google Scholar]
  7. Guo, S., & Dong, S. (2011). Graphene and its derivative-based sensing materials for analytical devices. Journal of Materials Chemistry, 21(46), 18503. [Google Scholar]
  8. Hao, J., Huang, C., Wu, H., Qiu, Y., Gao, Q., Hu, Z., … Zhang, L. (2015). A promising way to open an energy gap in bilayer graphene. Nanoscale, 7(40), 17096–17101. [Google Scholar]
  9. Hu, M., Yao, Z., & Wang, X. (2017). Graphene-Based Nanomaterials for Catalysis. Industrial and Engineering Chemistry Research, 56(13), 3477–3502. [Google Scholar]
  10. Kuroki, K., Onari, S., Arita, R., Usui, H., Tanaka, Y., Kontani, H., & Aoki, H. (2008). Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting   LaFeAsO  1 − x    F x. Physical Review Letters, 101(8), 087004. [Google Scholar]
  11. Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., Macdonald, B., … Lin, J. (n.d.). Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. [Google Scholar]
  12. Mccann, E., & Koshino, M. (2013). The electronic properties of bilayer graphene. [Google Scholar]
  13. Miramontes, O., Bonafé, F., Santiago, U., Larios-Rodriguez, E., Velázquez-Salazar, J. J., Mariscal, M. M., & Yacaman, M. J. (2015). Ultra-small rhenium clusters supported on graphene. Physical Chemistry Chemical Physics, 17(12), 7898–7906. [Google Scholar]
  14. Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M., & Terrones, H. (2017). Electronic and optical properties of strained graphene and other strained 2D materials: A review. Reports on Progress in Physics, 80(9), 096501. [Google Scholar]
  15. Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, … Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science (New York, N.Y.), 306(5696), 666–669. [Google Scholar]
  16. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V, Morozov, S. V, & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453. [Google Scholar]
  17. Randviir, E. P., Brownson, D. A. C., & Banks, C. E. (2014). A decade of graphene research: production, applications and outlook. Materials Today, 17(9), 426–432. [Google Scholar]
  18. Rozhkov, A. V., Sboychakov, A. O., Rakhmanov, A. L., & Nori, F. (2016). Electronic properties of graphene-based bilayer systems. Physics Reports, 648, 1–104. [Google Scholar]
  19. Tison, Y., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., … Ducastelle, F. (2015). Electronic interaction between nitrogen atoms in doped graphene. ACS Nano, 9(1), 670–678. [Google Scholar]
  20. Wang, H., Sun, K., Tao, F., Stacchiola, D. J., & Hu, Y. H. (2013). 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angewandte Chemie - International Edition, 52(35), 9210–9214. [Google Scholar]
  21. Zhang, W., Lin, C.-T., Liu, K.-K., Tite, T., Su, C.-Y., Chang, C.-H., … Li, L.-J. (2011). Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano, 5(9), 7517–7524. [Google Scholar]
  22. Zhao, X., Hayner, C. M., Kung, M. C., & Kung, H. H. (2011). In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Advanced Energy Materials, 1(6), 1079–1084. [Google Scholar]
  23. Zhen, Z., & Zhu, H. (2018). Structure and Properties of Graphene. In Graphene (pp. 1–12). Elsevier.  [Google Scholar]