- Allen, M. (2009). Honeycomb carbon -- A study of graphene. American Chemical Society, 184. [Google Scholar]
- Atomistix Toolkit version 2017.2, S. Q. A. (2017). No Title. Retrieved from www.quantumwise.com [Google Scholar]
- Avdoshenko, S. M., Ioffe, I. N., Cuniberti, G., Dunsch, L., & Popov, A. A. (2011). Organometallic Complexes of Graphene: Toward Atomic Spintronics Using a Graphene Web. ACS Nano, 5(12), 9939–9949. [Google Scholar]
- Bui, V. Q., Le, H. M., Kawazoe, Y., & Nguyen-Manh, D. (2013). Graphene-Cr-graphene intercalation nanostructures: Stability and magnetic properties from density functional theory investigations. Journal of Physical Chemistry C, 117(7), 3605–3614. [Google Scholar]
- Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162. [Google Scholar]
- Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., … Kim, K. S. (2012). Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chemical Reviews, 112(11), 6156–6214. [Google Scholar]
- Guo, S., & Dong, S. (2011). Graphene and its derivative-based sensing materials for analytical devices. Journal of Materials Chemistry, 21(46), 18503. [Google Scholar]
- Hao, J., Huang, C., Wu, H., Qiu, Y., Gao, Q., Hu, Z., … Zhang, L. (2015). A promising way to open an energy gap in bilayer graphene. Nanoscale, 7(40), 17096–17101. [Google Scholar]
- Hu, M., Yao, Z., & Wang, X. (2017). Graphene-Based Nanomaterials for Catalysis. Industrial and Engineering Chemistry Research, 56(13), 3477–3502. [Google Scholar]
- Kuroki, K., Onari, S., Arita, R., Usui, H., Tanaka, Y., Kontani, H., & Aoki, H. (2008). Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO 1 − x F x. Physical Review Letters, 101(8), 087004. [Google Scholar]
- Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., Macdonald, B., … Lin, J. (n.d.). Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. [Google Scholar]
- Mccann, E., & Koshino, M. (2013). The electronic properties of bilayer graphene. [Google Scholar]
- Miramontes, O., Bonafé, F., Santiago, U., Larios-Rodriguez, E., Velázquez-Salazar, J. J., Mariscal, M. M., & Yacaman, M. J. (2015). Ultra-small rhenium clusters supported on graphene. Physical Chemistry Chemical Physics, 17(12), 7898–7906. [Google Scholar]
- Naumis, G. G., Barraza-Lopez, S., Oliva-Leyva, M., & Terrones, H. (2017). Electronic and optical properties of strained graphene and other strained 2D materials: A review. Reports on Progress in Physics, 80(9), 096501. [Google Scholar]
- Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, … Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science (New York, N.Y.), 306(5696), 666–669. [Google Scholar]
- Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V, Morozov, S. V, & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453. [Google Scholar]
- Randviir, E. P., Brownson, D. A. C., & Banks, C. E. (2014). A decade of graphene research: production, applications and outlook. Materials Today, 17(9), 426–432. [Google Scholar]
- Rozhkov, A. V., Sboychakov, A. O., Rakhmanov, A. L., & Nori, F. (2016). Electronic properties of graphene-based bilayer systems. Physics Reports, 648, 1–104. [Google Scholar]
- Tison, Y., Lagoute, J., Repain, V., Chacon, C., Girard, Y., Rousset, S., … Ducastelle, F. (2015). Electronic interaction between nitrogen atoms in doped graphene. ACS Nano, 9(1), 670–678. [Google Scholar]
- Wang, H., Sun, K., Tao, F., Stacchiola, D. J., & Hu, Y. H. (2013). 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angewandte Chemie - International Edition, 52(35), 9210–9214. [Google Scholar]
- Zhang, W., Lin, C.-T., Liu, K.-K., Tite, T., Su, C.-Y., Chang, C.-H., … Li, L.-J. (2011). Opening an Electrical Band Gap of Bilayer Graphene with Molecular Doping. ACS Nano, 5(9), 7517–7524. [Google Scholar]
- Zhao, X., Hayner, C. M., Kung, M. C., & Kung, H. H. (2011). In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Advanced Energy Materials, 1(6), 1079–1084. [Google Scholar]
- Zhen, Z., & Zhu, H. (2018). Structure and Properties of Graphene. In Graphene (pp. 1–12). Elsevier. [Google Scholar]
|