International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2022, Vol. 6(2) 46-63

Behaviour of Magnetized Strange Quark Matter in f(R,T) Theory for General Kantowski-Sachs Model

Hüsnü Baysal, Sezgin Aygün, İhsan Yılmaz & Can Aktaş

pp. 46 - 63   |  DOI: https://doi.org/10.29329/ijiasr.2022.454.3

Published online: June 30, 2022  |   Number of Views: 108  |  Number of Download: 330


Abstract

In this study, we have investigated the behavior of magnetized strange quark matter (MSQM) in f(R,T) gravity for LRS Bianchi I, Bianchi III and Kantowski-Sachs (GKS) universe models with cosmological term. For the solutions of modified field equations, we have used linearly varying deceleration parameter (LVDP), anisotropy parameter and equation of state for strange quark matter. When the models goes to the isotropy magnetic field only occurs in Bianchi III and Kantowski-Sachs universe models. When t→∞, strange quark matter distribution behaves like dark energy. The K(θ) parameter, which allows us to obtain different universe models, is effective on the magnetic field, cosmological term and f(R,T) function. In addition, the graphics of the obtained results were examined in detail.

Keywords: f(R, T) gravitation theory, General Kantowski-Sachs universe, Magnetic field, Linear deceleration parameter


How to Cite this Article

APA 6th edition
Baysal, H., Aygun, S., Yilmaz, I. & Aktas, C. (2022). Behaviour of Magnetized Strange Quark Matter in f(R,T) Theory for General Kantowski-Sachs Model . International Journal of Innovative Approaches in Science Research, 6(2), 46-63. doi: 10.29329/ijiasr.2022.454.3

Harvard
Baysal, H., Aygun, S., Yilmaz, I. and Aktas, C. (2022). Behaviour of Magnetized Strange Quark Matter in f(R,T) Theory for General Kantowski-Sachs Model . International Journal of Innovative Approaches in Science Research, 6(2), pp. 46-63.

Chicago 16th edition
Baysal, Husnu, Sezgin Aygun, Ihsan Yilmaz and Can Aktas (2022). "Behaviour of Magnetized Strange Quark Matter in f(R,T) Theory for General Kantowski-Sachs Model ". International Journal of Innovative Approaches in Science Research 6 (2):46-63. doi:10.29329/ijiasr.2022.454.3.

References
  1. Adams, J. and Collaboration, S. (2005).  Experimental and theoretical challenges in the search for the quark-gluon plasma: The star collaboration’s critical assessment of the evidence from rhic collisions.   Nuclear Physics A, 757(1):102 – 183.  First Three Years of Operation of RHIC. [Google Scholar]
  2. Adhav, K. S. (2011).  Lrs bianchi type-i cosmological model with linearly varying deceleration parameter.   The European Physical Journal Plus, 126(12):122. [Google Scholar]
  3. Agrawal, P. K. and Pawar, D. D. (2017).  Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f ( R, T) Theory of Gravity.   Journal of Astrophysics and Astronomy, 38:2. [Google Scholar]
  4. Akarsu, Ö. and Dereli, T. (2012).  Cosmological Models with Linearly Varying Deceleration Parameter.   International Journal of Theoretical Physics, 51:612–621. [Google Scholar]
  5. Akarsu, Ö., Dereli, T., Kumar, S. and Xu, L., (2014). Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter, The European Physical Journal Plus, 129: 22. [Google Scholar]
  6. Aktaş, C., Aygün, S., and Sahoo, P. K. (2018).  Relationship between magnetic field and anisotropy parameter in gravitation theories.   Modern Physics Letters A, 33:1850135. [Google Scholar]
  7. Aktaş, C. and Aygün, S. (2017a).  Magnetized strange quark matter solutions in f(R, T) gravity with cosmological constant.   Chinese Journal of Physics, 55:71–78. [Google Scholar]
  8. Aktaş, C. and Aygün, S. (2017b).  Magnetized strange quark matter solutions in f(R, T) gravity with cosmological constant.   Chinese Journal of Physics, 55:71–78. [Google Scholar]
  9. Aktaş, C. and Yılmaz, I. (2007).  Magnetized quark and strange quark matter in the spherical symmetric space-time admitting conformal motion.   General Relativity and Gravitation, 39(6):849–862. [Google Scholar]
  10. Aygün, S., Aktaş, C., and Yılmaz, . (2016).  Strange quark matter solutions for Marder’s universe in f(R,T) gravity with .   Astrophysics and Space Science, 361:380. [Google Scholar]
  11. Aygün, S., Aktaş, C. and Yılmaz, I. (2017).  The Behaviour of Magnetized Strange Quark Matter on Bianchi VIh Universe in the Framework of f (R, T) Theory.   Archives of Current Research International, 11:1–8. [Google Scholar]
  12. Back, B. B. and Collaboration, P. (2005).  The phobos perspective on discoveries at rhic.   Nuclear Physics A, 757(1):28 – 101.  First Three Years of Operation of RHIC. [Google Scholar]
  13. Barrow, J. D., Maartens, R., and Tsagas, C. G. (2007).  Cosmology with inhomogeneous magnetic fields.   Physics Reports, 449(6):131–171. [Google Scholar]
  14. Biswas, S., Ghosh, S., Ray, S., Rahaman, F., and Guha, B. K. (2019).  Strange stars in Krori-Barua spacetime under f(R , T) gravity.   Annals of Physics, 401:1–20. [Google Scholar]
  15. Bodmer, A. R. (1971).  Collapsed Nuclei.   Physical Review D, 4:1601–1606. [Google Scholar]
  16. Deb, D., Guha, B. K., Rahaman, F., and Ray, S. (2018).  Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity.   Physical Review D, 97(8):084026. [Google Scholar]
  17. de Gouveia dal Pino, E. M., Lugones, G., and Lazarian, A., editors (2005).   Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures, volume 784 of  American Institute of Physics Conference Series. [Google Scholar]
  18. Godani, N. (2019).  Locally rotationally symmetric Bianchi type-II cosmological model in f(R, T) gravity.   Indian Journal of Physics. [Google Scholar]
  19. Grasso, D. and Rubinstein, H. R. (2001).  Magnetic fields in the early Universe.   Physics Reports, 348:163–266. [Google Scholar]
  20. Güdekli, E. and Çalışkan, A. (2018).  Perfect fluid LRS Bianchi type -I- universe model in F(R,T).  In  American Institute of Physics Conference Series, volume 2042, page 020052. [Google Scholar]
  21. Harko, T., Lobo, F. S. N., Nojiri, S., and Odintsov, S. D. (2011).  f(R,T) gravity.   Physical Review D, 84(2):024020. [Google Scholar]
  22. Itoh, N. (1970).  Hydrostatic Equilibrium of Hypothetical Quark Stars.   Progress of Theoretical Physics, 44:291–292. [Google Scholar]
  23. Katore, S. D. and Hatkar, S. P. (2016).  Bianchi type III and Kantowski-Sachs domain wall cosmological models in the f(R, T) theory of gravitation.   Progress of Theoretical and Experimental Physics, 2016(3):033E01. [Google Scholar]
  24. Keskin, A. I. (2018).  Super inflation mechanism with oscillating scalar fields in F(R,T) gravity.   International Journal of Modern Physics D, 27:1850112. [Google Scholar]
  25. Kömürcü, C. and Aktaş, C. (2020).  Investigation of the magnetized string distribution in the Marder universe with the cosmological term in f(R,T) theory.   Modern Physics Letters A, 35(32):2050263. [Google Scholar]
  26. Marinacci, F. and Vogelsberger, M. (2016).  Effects of simulated cosmological magnetic fields on the galaxy population.   Monthly Notices of the Royal Astronomical Society, 456:L69–L73. [Google Scholar]
  27. Momeni, D., Myrzakulov, R., and Güdekli, E. (2015).  Cosmological viable mimetic f(R) and f(R, T) theories via Noether symmetry.   International Journal of Geometric Methods in Modern Physics, 12:1550101. [Google Scholar]
  28. Nagpal, R., Singh, J. K., and Aygün, S. (2018).  FLRW cosmological models with quark and strange quark matters in f(R,T) gravity.   Astrophysics and Space Science, 363:114. [Google Scholar]
  29. Nagpal, R., Singh, J. K., Beesham, A., and Shabani, H. (2019).  Cosmological aspects of a hyperbolic solution in f(R , T) gravity.   Annals of Physics, 405:234–255. [Google Scholar]
  30. Peebles, P. J. E. (1967).  The Gravitational Instability of the Universe.   Astrophysical Journal, 147:859. [Google Scholar]
  31. Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C., Ellis, R. S., Irwin, M., McMahon, R. G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B. J., Filippenko, A. V., Matheson, T., Fruchter, A. S., Panagia, N., Newberg, H. J. M., Couch, W. J., and Project, T. S. C. (1999).  Measurements of  and  from 42 High-Redshift Supernovae.   The Astrophysical Journal, 517:565–586. [Google Scholar]
  32. Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., and Tonry, J. (1998).  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant.   The Astronomical Journal, 116:1009–1038. [Google Scholar]
  33. Sahoo, P. K., Sahoo, P., Bishi, B. K., and Aygün, S. (2017).  Magnetized strange quark model with Big Rip singularity in f(R, T) gravity.   Modern Physics Letters A, 32:1750105. [Google Scholar]
  34. Sahoo, P., Sahoo, P., Bishi, B. K., and Aygün, S. (2018).  Magnetized strange quark matter in f(r, t) gravity with bilinear and special form of time varying deceleration parameter.   New Astronomy, 60:80 – 87. [Google Scholar]
  35. Samanta, G. C. (2013).  Kantowski-Sachs Universe Filled with Perfect Fluid in f( R, T) Theory of Gravity.   International Journal of Theoretical Physics, 52(8):2647–2656. [Google Scholar]
  36. Sofuo lu, D. (2016).  Rotating and expanding Bianchi type-IX model in f(R,T) theory of gravity.   Astrophysics and Space Science, 361:12. [Google Scholar]
  37. Sofuo lu, D. (2019).  Gödel universe in f(r,t) gravity.   International Journal of Modern Physics D, 28(07):1950089. [Google Scholar]
  38. Sotani, H., Kohri, K., and Harada, T. (2004).  Restricting quark matter models by gravitational wave observation.   Physical Review D, 69(8):084008. [Google Scholar]
  39. Tsagas, C. G. and Barrow, J. D. (1997).  A gauge-invariant analysis of magnetic fields in general-relativistic cosmology.   Classical and Quantum Gravity, 14(9):2539–2562. [Google Scholar]
  40. Witten, E. (1984).  Cosmic separation of phases.   Physical Review D, 30:272–285. [Google Scholar]
  41. Wolfe, A. M., Lanzetta, K. M., and Oren, A. L. (1992).  Magnetic fields in damped Ly-alpha systems.   Astrophysical Journal, 388:17–22. [Google Scholar]
  42. Zubair, M. and Ali Hassan, S. M. (2016).  Dynamics of Bianchi type I, III and Kantowski-Sachs solutions in f(R,T) gravity.   Astrophysics and Space Science, 361(4):149. [Google Scholar]