- Adams, J. and Collaboration, S. (2005). Experimental and theoretical challenges in the search for the quark-gluon plasma: The star collaboration’s critical assessment of the evidence from rhic collisions. Nuclear Physics A, 757(1):102 – 183. First Three Years of Operation of RHIC. [Google Scholar]
- Adhav, K. S. (2011). Lrs bianchi type-i cosmological model with linearly varying deceleration parameter. The European Physical Journal Plus, 126(12):122. [Google Scholar]
- Agrawal, P. K. and Pawar, D. D. (2017). Plane Symmetric Cosmological Model with Quark and Strange Quark Matter in f ( R, T) Theory of Gravity. Journal of Astrophysics and Astronomy, 38:2. [Google Scholar]
- Akarsu, Ö. and Dereli, T. (2012). Cosmological Models with Linearly Varying Deceleration Parameter. International Journal of Theoretical Physics, 51:612–621. [Google Scholar]
- Akarsu, Ö., Dereli, T., Kumar, S. and Xu, L., (2014). Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter, The European Physical Journal Plus, 129: 22. [Google Scholar]
- Aktaş, C., Aygün, S., and Sahoo, P. K. (2018). Relationship between magnetic field and anisotropy parameter in gravitation theories. Modern Physics Letters A, 33:1850135. [Google Scholar]
- Aktaş, C. and Aygün, S. (2017a). Magnetized strange quark matter solutions in f(R, T) gravity with cosmological constant. Chinese Journal of Physics, 55:71–78. [Google Scholar]
- Aktaş, C. and Aygün, S. (2017b). Magnetized strange quark matter solutions in f(R, T) gravity with cosmological constant. Chinese Journal of Physics, 55:71–78. [Google Scholar]
- Aktaş, C. and Yılmaz, I. (2007). Magnetized quark and strange quark matter in the spherical symmetric space-time admitting conformal motion. General Relativity and Gravitation, 39(6):849–862. [Google Scholar]
- Aygün, S., Aktaş, C., and Yılmaz, . (2016). Strange quark matter solutions for Marder’s universe in f(R,T) gravity with . Astrophysics and Space Science, 361:380. [Google Scholar]
- Aygün, S., Aktaş, C. and Yılmaz, I. (2017). The Behaviour of Magnetized Strange Quark Matter on Bianchi VIh Universe in the Framework of f (R, T) Theory. Archives of Current Research International, 11:1–8. [Google Scholar]
- Back, B. B. and Collaboration, P. (2005). The phobos perspective on discoveries at rhic. Nuclear Physics A, 757(1):28 – 101. First Three Years of Operation of RHIC. [Google Scholar]
- Barrow, J. D., Maartens, R., and Tsagas, C. G. (2007). Cosmology with inhomogeneous magnetic fields. Physics Reports, 449(6):131–171. [Google Scholar]
- Biswas, S., Ghosh, S., Ray, S., Rahaman, F., and Guha, B. K. (2019). Strange stars in Krori-Barua spacetime under f(R , T) gravity. Annals of Physics, 401:1–20. [Google Scholar]
- Bodmer, A. R. (1971). Collapsed Nuclei. Physical Review D, 4:1601–1606. [Google Scholar]
- Deb, D., Guha, B. K., Rahaman, F., and Ray, S. (2018). Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity. Physical Review D, 97(8):084026. [Google Scholar]
- de Gouveia dal Pino, E. M., Lugones, G., and Lazarian, A., editors (2005). Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures, volume 784 of American Institute of Physics Conference Series. [Google Scholar]
- Godani, N. (2019). Locally rotationally symmetric Bianchi type-II cosmological model in f(R, T) gravity. Indian Journal of Physics. [Google Scholar]
- Grasso, D. and Rubinstein, H. R. (2001). Magnetic fields in the early Universe. Physics Reports, 348:163–266. [Google Scholar]
- Güdekli, E. and Çalışkan, A. (2018). Perfect fluid LRS Bianchi type -I- universe model in F(R,T). In American Institute of Physics Conference Series, volume 2042, page 020052. [Google Scholar]
- Harko, T., Lobo, F. S. N., Nojiri, S., and Odintsov, S. D. (2011). f(R,T) gravity. Physical Review D, 84(2):024020. [Google Scholar]
- Itoh, N. (1970). Hydrostatic Equilibrium of Hypothetical Quark Stars. Progress of Theoretical Physics, 44:291–292. [Google Scholar]
- Katore, S. D. and Hatkar, S. P. (2016). Bianchi type III and Kantowski-Sachs domain wall cosmological models in the f(R, T) theory of gravitation. Progress of Theoretical and Experimental Physics, 2016(3):033E01. [Google Scholar]
- Keskin, A. I. (2018). Super inflation mechanism with oscillating scalar fields in F(R,T) gravity. International Journal of Modern Physics D, 27:1850112. [Google Scholar]
- Kömürcü, C. and Aktaş, C. (2020). Investigation of the magnetized string distribution in the Marder universe with the cosmological term in f(R,T) theory. Modern Physics Letters A, 35(32):2050263. [Google Scholar]
- Marinacci, F. and Vogelsberger, M. (2016). Effects of simulated cosmological magnetic fields on the galaxy population. Monthly Notices of the Royal Astronomical Society, 456:L69–L73. [Google Scholar]
- Momeni, D., Myrzakulov, R., and Güdekli, E. (2015). Cosmological viable mimetic f(R) and f(R, T) theories via Noether symmetry. International Journal of Geometric Methods in Modern Physics, 12:1550101. [Google Scholar]
- Nagpal, R., Singh, J. K., and Aygün, S. (2018). FLRW cosmological models with quark and strange quark matters in f(R,T) gravity. Astrophysics and Space Science, 363:114. [Google Scholar]
- Nagpal, R., Singh, J. K., Beesham, A., and Shabani, H. (2019). Cosmological aspects of a hyperbolic solution in f(R , T) gravity. Annals of Physics, 405:234–255. [Google Scholar]
- Peebles, P. J. E. (1967). The Gravitational Instability of the Universe. Astrophysical Journal, 147:859. [Google Scholar]
- Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C., Ellis, R. S., Irwin, M., McMahon, R. G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B. J., Filippenko, A. V., Matheson, T., Fruchter, A. S., Panagia, N., Newberg, H. J. M., Couch, W. J., and Project, T. S. C. (1999). Measurements of and from 42 High-Redshift Supernovae. The Astrophysical Journal, 517:565–586. [Google Scholar]
- Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., and Tonry, J. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116:1009–1038. [Google Scholar]
- Sahoo, P. K., Sahoo, P., Bishi, B. K., and Aygün, S. (2017). Magnetized strange quark model with Big Rip singularity in f(R, T) gravity. Modern Physics Letters A, 32:1750105. [Google Scholar]
- Sahoo, P., Sahoo, P., Bishi, B. K., and Aygün, S. (2018). Magnetized strange quark matter in f(r, t) gravity with bilinear and special form of time varying deceleration parameter. New Astronomy, 60:80 – 87. [Google Scholar]
- Samanta, G. C. (2013). Kantowski-Sachs Universe Filled with Perfect Fluid in f( R, T) Theory of Gravity. International Journal of Theoretical Physics, 52(8):2647–2656. [Google Scholar]
- Sofuo lu, D. (2016). Rotating and expanding Bianchi type-IX model in f(R,T) theory of gravity. Astrophysics and Space Science, 361:12. [Google Scholar]
- Sofuo lu, D. (2019). Gödel universe in f(r,t) gravity. International Journal of Modern Physics D, 28(07):1950089. [Google Scholar]
- Sotani, H., Kohri, K., and Harada, T. (2004). Restricting quark matter models by gravitational wave observation. Physical Review D, 69(8):084008. [Google Scholar]
- Tsagas, C. G. and Barrow, J. D. (1997). A gauge-invariant analysis of magnetic fields in general-relativistic cosmology. Classical and Quantum Gravity, 14(9):2539–2562. [Google Scholar]
- Witten, E. (1984). Cosmic separation of phases. Physical Review D, 30:272–285. [Google Scholar]
- Wolfe, A. M., Lanzetta, K. M., and Oren, A. L. (1992). Magnetic fields in damped Ly-alpha systems. Astrophysical Journal, 388:17–22. [Google Scholar]
- Zubair, M. and Ali Hassan, S. M. (2016). Dynamics of Bianchi type I, III and Kantowski-Sachs solutions in f(R,T) gravity. Astrophysics and Space Science, 361(4):149. [Google Scholar]
|