International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2022, Vol. 6(1) 12-22

Bacillus Boroniphilus Genom Dizisinin Tamamlanması Çalışmaları ve Gap Bölgelerindeki Transpozaz Kodlayan Gen Dizilerinin Belirlenmesi

Merve Sezer Kürkçü, Bekir Çöl, Hi̇lal Özdağ, Yeşi̇m Doğan & Zeynep Özkeserli̇

pp. 12 - 22   |  DOI: https://doi.org/10.29329/ijiasr.2022.433.2

Published online: March 30, 2022  |   Number of Views: 4  |  Number of Download: 37


Abstract

Yeni nesil sekanslama (next-generation sequencing, NGS) teknolojisinin geliştirilmesi ile canlılardaki genomik bilginin açığa çıkartılması önemli derecede hız kazanmıştır. Bu gelişme ile genomları belirlenen organizmaların sayısındaki artış dikkat çekmektedir. Bu sekanslama yönteminde temel yaklaşım, tüm genomun kısa dizilere bölünmesi ve fragmentler halinde okunması ve ardından bunlar için geliştirilen yazılım programları ile bu fragmanların birleştirilmesidir (Contig Assembly). Ancak, bu kısa dizileri okuma yaparak sekanslama (short-read sequencing) platformlarının bazı kısıtlamalarının olduğu görülmüştür. Bu yeni sekanslanan genom dizilerinin çoğunun tamamlanmamış, genetik içeriği temsil eden taslaklar halinde kaldığı bilinmektedir.

Bu çalışmada, yüksek bor konsantrasyonu içeren ortamlarda yaşayabilen Bacillus boroniphilus bakterisinin genom belirlenmesi çalışmaları sırasında, belirlenemeyen sekans dizilerinin hangi DNA dizileri olduğunun açıklığa kavuşturulması amaçlanmıştır. Genom birleştirme işlemleri sırasında görülen gap (boşluk) bölgelerinin sekans dizilerinin belirlenebilmesi için yüzlerce primer dizayn edilerek PZR işlemleri sonucu elde edilen ürünlerin sekans analizlerinin sonuçlarının değerlendirilmesi ile neredeyse hepsinin transpozaz olduğu görülmüştür. Gap bölgeleri hakkında elde edilen bu bilgiler yeni nesil genom sekanslama çalışmalarındaki verimliliğin arttırılması için oldukça önemlidir.

Keywords: Transpozaz, Yeni Nesil Genom Sekanslama, Gap (Boşluk), Bacillus Boroniphilus, Shotgun Sekanslama


How to Cite this Article

APA 6th edition
Kurkcu, M.S., Col, B., Ozdag, H., Dogan, Y. & Ozkeserli̇, Z. (2022). Bacillus Boroniphilus Genom Dizisinin Tamamlanması Çalışmaları ve Gap Bölgelerindeki Transpozaz Kodlayan Gen Dizilerinin Belirlenmesi . International Journal of Innovative Approaches in Science Research, 6(1), 12-22. doi: 10.29329/ijiasr.2022.433.2

Harvard
Kurkcu, M., Col, B., Ozdag, H., Dogan, Y. and Ozkeserli̇, Z. (2022). Bacillus Boroniphilus Genom Dizisinin Tamamlanması Çalışmaları ve Gap Bölgelerindeki Transpozaz Kodlayan Gen Dizilerinin Belirlenmesi . International Journal of Innovative Approaches in Science Research, 6(1), pp. 12-22.

Chicago 16th edition
Kurkcu, Merve Sezer, Bekir Col, Hi̇lal Ozdag, Yesi̇m Dogan and Zeynep Ozkeserli̇ (2022). "Bacillus Boroniphilus Genom Dizisinin Tamamlanması Çalışmaları ve Gap Bölgelerindeki Transpozaz Kodlayan Gen Dizilerinin Belirlenmesi ". International Journal of Innovative Approaches in Science Research 6 (1):12-22. doi:10.29329/ijiasr.2022.433.2.

References
  1. Iftikhar A., Akira Y, Fujiwara T. 2007 “A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles.” 2007 Mar;11(2):217-24. Epub 2006 Oct 27. [Google Scholar]
  2. Çöl, B., Ozkeserli, Z., Kumar, D., Ozdag, H., & Alakoç, Y. D. (2014). “Genome Sequence of the Boron-Tolerant and -Requiring Bacterium Bacillus boroniphilus.” Genome announcements, 2(1), e00935-13. doi:10.1128/genomeA.00935-13 [Google Scholar] [Crossref] 
  3. Lasken R. S. “Genomic sequencing of uncultured microorganisms from single cells” (2012) Nat Rev Microbiol, 10, pp. 631-640. doi:10.1038/nrmicro2857 [Google Scholar] [Crossref] 
  4. Ishoey T., Woyke T., Stepanauskas R., Novotny M., Lasken R. S. (2008) “Genomic sequencing of single microbial cells from environmental samples” Curr Opin Microbiol, 11, pp. 198-204. [Google Scholar]
  5. Staden, R. (1979). "A strategy of DNA sequencing employing computer programs". Nucleic Acids Research. 6 (70): 2601–10. doi:10.1093/nar/6.7.2601. PMC 327874. PMID 46119 [Google Scholar] [Crossref] 
  6. Anderson, S. (1981). "Shotgun DNA sequencing using cloned DNase I-generated fragments". Nucleic Acids Research. 9 (13): 3015–27. doi:10.1093/nar/9.13.3015. PMC 327328. PMID 6269069. [Google Scholar] [Crossref] 
  7. Gardner, Richard C.; Howarth, Alan J.; Hahn, Peter; Brown-Luedi, Marianne; Shepherd, Robert J.; Messing, Joachim (1981). "The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing". Nucleic Acids Research. 9 (12): 2871–2888. doi:10.1093/nar/9.12.2871. ISSN 0305-1048. PMC 326899. PMID 6269062. [Google Scholar] [Crossref] 
  8. Edwards, A., Caskey, T. (1991). "Closure strategies for random DNA sequencing". Methods: A Companion to Methods in Enzymology. 3 (1): 41–47. doi:10.1016/S1046-2023(05)80162-8 [Google Scholar] [Crossref] 
  9. Edwards, A., Voss, H., Rice, P., Civitello, A., Stegemann, J., Schwager, C.; Zimmerman, J.; Erfle, H.; Caskey, T.; Ansorge, W. (1990). "Automated DNA sequencing of the human HPRT locus". Genomics. 6 (4): 593–608. doi:10.1016/0888-7543(90)90493-E. PMID 2341149. [Google Scholar] [Crossref] 
  10. Roach, JC; Boysen, C; Wang, K; Hood, L (1995). "Pairwise end sequencing: a unified approach to genomic mapping and sequencing". Genomics. 26 (2): 345–353. doi:10.1016/0888-7543(95)80219-C. PMID 7601461 [Google Scholar] [Crossref] 
  11. Fleischmann, RD; et al. (1995). "Whole-genome random sequencing and assembly of Haemophilus influenzae Rd". Science. 269 (5223): 496–512. Bibcode:1995Sci...269..496F. doi:10.1126/science.7542800. PMID 7542800 . [Google Scholar] [Crossref] 
  12. Adams, MD; et al. (2000). "The genome sequence of Drosophila melanogaster" (PDF). Science. 287 (5461): 2185–95. Bibcode:2000Sci...287.2185.. CiteSeerX 10.1.1.549.8639. doi:10.1126/science.287.5461.2185. PMID 10731132. [Google Scholar] [Crossref] 
  13. Maiti A. K.,  Bouvagnet P. (2001) “Assembling and gap filling of unordered genome sequences through gene checking” Genome Biology volume 2(9), DOI: 10.1186/gb-2001-2-9-preprint0008. [Google Scholar]
  14. Mark J. Chaisson and Pavel A. P. (2008). “Short read fragment assembly of bacterial genomes”. Genome Res. 2008. 18: 324-330. [Google Scholar]
  15. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., et al.(2006) “Genome sequencing in microfabricated high-density picolitre reactors.” Nature 437:376–380. [Google Scholar]
  16. Ronaghi, M., Mathias, U., Nyren, P.(1998) DNA sequencing: A sequencing method based on real-time pyrophosphate. Science 281:363–365. [Google Scholar]
  17. Chain P. S. G., Grafham D V, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C, et al. (2009) “Genomics. Genome project standards in a new era of sequencing.” Science 326:236-237. [Google Scholar]
  18. Sanger F, Nicklen S and Coulson AR (1977) “DNA sequencing with chain-terminating inhibitors.” Proc Natl Acad Sci USA 74:5463-5467. [Google Scholar]
  19. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L and Law M (2012) “Comparison of next-generation sequencing systems.” J Biomed Biotechnol 2012:251364. [Google Scholar]
  20. Huang X, Madan A (1999) “CAP3: A DNA sequence assembly program.” Genome Res 9:868-877. [Google Scholar]
  21. Pevzner P. A, Tang H., Waterman M.S. (2001) “An Eulerian path approach to DNA fragment assembly.” Proc Natl Acad Sci U S A 98:9748-9753. [Google Scholar]
  22. “Compeau P.E.C., Pevzner P.A., Tesler G. (2011) “How to apply de Bruijn graphs to genome assembly.” Nat Biotechnol 29:987-991. [Google Scholar]
  23. Zerbino D.R., Birney E. (2008) “Velvet: Algorithms for de novo short read assembly using de Bruijn graphs.” Genome Res 18:821-829. [Google Scholar]
  24. Simpson J.T, Wong K., Jackman S.D., Schein J.E., Jones S.J.M., Birol I. (2009) “ABySS: A parallel assembler for short read sequence data.” Genome Res 19:1117-23. [Google Scholar]
  25. Boisvert S., Laviolette F.,nCorbeil J. (2010) “Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies.” J Comput Biol 17:1519-1533. [Google Scholar]
  26. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. (2012) “SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing.” J Comput Biol 19:455-477. [Google Scholar]
  27. Luo R., Liu B., Xie Y., Li Z., Huang W., Yuan J., He G., Chen Y., Pan Q., Liu Y., et al. (2012) “SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler.” Gigascience 1:18. [Google Scholar]
  28. Mardis E., McPherson J., Martienssen R., Wilson R.K., McCombie W.R. (2002) “What is finished, and why does it matter.” Genome Res 12:669-671. [Google Scholar]
  29. Land M., Hauser L., Jun S.R, Nookaew I., Leuze M.R., Ahn T.H., Karpinets T., Lund O., Kora G., Wassenaar T., et al. (2015) “Insights from 20 years of bacterial genome sequencing.” Funct Integr Genomics 15:141-161. [Google Scholar]
  30. Ricker N., Qian H. Fulthorpe R.R. (2012) “The limitations of draft assemblies for understanding prokaryotic adaptation and evolution.” Genomics 100:167-175. [Google Scholar]
  31. Klassen J.L., Currie C.R. (2012) “Gene fragmentation in bacterial draft genomes: Extent, consequences and mitigation.” BMC Genomics 13:14. [Google Scholar]
  32. Genivaldo, G.Z., Silva, Bas E., Dutilh, D., Matthews, K., Elkins, R., Schmieder, Elizabeth A., Dinsdale, R. A. E. (2013). "Combining de novo and reference-guided assembly with scaffold_builder". Source Code Biomed Central. 8 (23): 23. [Google Scholar]