International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2021, Vol. 5(4) 175-185

Eggplant Anther Culture: Association Between Bud/Anther Size and Microspore Developmental Stage in Different Eggplant Genotypes

Buse Özdemir Çelik & Ahmet Naci Onus

pp. 175 - 185   |  DOI: https://doi.org/10.29329/ijiasr.2021.414.1

Published online: December 31, 2021  |   Number of Views: 145  |  Number of Download: 507


Abstract

Anther culture is a valuable method for obtaining haploid and doubled haploid (DH) plants from microspores and there are several factors influencing the induction of androgenesis such as genotype and microspore development stage.  The aim of the present work was, therefore, to identify the bud stages, with maximum amount of young microspores (YM) and mid microspores (MM), thought to be most responsive to embryogenesis induction in anther cultured, and to investigate the influence of genotype on embryogenesis. In this work, first of all anthers and buds containing the highest percentage of YM and MM in four different F1 eggplant genotypes were identified.  Results revealed that a certain bud/ anther size group in each genotype might correspond to different microspore / pollen development stage in different genotypes.  After determining the best anther length in order to increase the presence of YM and MM corresponding anthers were collected for four genotypes and cultured. Embryo and regenerated plantlet production were taken into consideration to evaluate the response to anther culture for each genotype. Embryos were obtained in all 4 genotypes with variable percentages, ranging from 3,57%  to 40.67 %. As a conclusion, related bud and anther length determined for each genotype could be used as fast and reliable criteria to determine the most responsive microspore/pollen developmental stage, which has maximum amount of YM and MM, to increase the efficiency in eggplant anther culture.

Keywords: Solanum melongena L., Microspore Development Stage, Androgenesis, Doubled Haploids, Genotype


How to Cite this Article

APA 6th edition
Celik, B.O. & Onus, A.N. (2021). Eggplant Anther Culture: Association Between Bud/Anther Size and Microspore Developmental Stage in Different Eggplant Genotypes . International Journal of Innovative Approaches in Science Research, 5(4), 175-185. doi: 10.29329/ijiasr.2021.414.1

Harvard
Celik, B. and Onus, A. (2021). Eggplant Anther Culture: Association Between Bud/Anther Size and Microspore Developmental Stage in Different Eggplant Genotypes . International Journal of Innovative Approaches in Science Research, 5(4), pp. 175-185.

Chicago 16th edition
Celik, Buse Ozdemir and Ahmet Naci Onus (2021). "Eggplant Anther Culture: Association Between Bud/Anther Size and Microspore Developmental Stage in Different Eggplant Genotypes ". International Journal of Innovative Approaches in Science Research 5 (4):175-185. doi:10.29329/ijiasr.2021.414.1.

References
  1. Alpsoy, H. C., & Şeniz, V. (2004). Researches on the in vitro androgenesis and obtaining haploid plants in some eggplant genotypes. In III Balkan Symposium on Vegetables and Potatoes 729 (pp. 137-141). [Google Scholar]
  2. Bașay, S., Șenİz, V., & Ellİaltıoğlu, Ș. (2011). Obtaining dihaploid lines by using anther culture in the different eggplant cultivars. Journal of Food, Agriculture & Environment, 9(2 part 1), 188-190. [Google Scholar]
  3. Başay, S., & Ellialtioğlu, Ş. Ş. (2013). Effect of genotypical factors on the effectiveness of anther culture in eggplant (Solanum melongena L.). Turkish Journal of Biology, 37(4), 499-505. [Google Scholar]
  4. Chambonnet, D. 1988. Production of haploid eggplant plants. Bulletin interne de la Station d’Amelioration des Plantes Maraicheresd’Avignon-Montfavet, France, pp 1–10. [Google Scholar]
  5. De Vaulx, R. D., & Chambonnet, D. (1982). Culture in vitro d'anthères d'aubergine (Solanum melon-gena L.): stimulation de la production de plantes au moyen de traitements à+ 35° C associés à de faibles teneurs en substances de croissance. Agronomie, 2(10), 983-988. [Google Scholar]
  6. Dunwell, J.M. 1985. Embryogenesis from pollen in vitro. In: Zaitlin P, Day P, Hollaender A (eds) Biotechnology in plant science. Academic Press, Orlando, pp 49–76. [Google Scholar]
  7. Dunwell, J. M. (2010). Haploids in flowering plants: origins and exploitation. Plant biotechnology journal, 8(4), 377-424. [Google Scholar]
  8. Ellialtioğlu, Ş., Başay, S., & Kuşvuran, Ş. (2012). Patlıcanda polen dimorfizmi ve anter kültürü ilişkisinin incelenmesi. International Journal of Agricultural and Natural Sciences, 5(1), 149-152. [Google Scholar]
  9. Forster, B. P., Heberle-Bors, E., Kasha, K. J., & Touraev, A. (2007). The resurgence of haploids in higher plants. Trends in plant science, 12(8), 368-375. [Google Scholar]
  10. Gemes Juhasz, A., G. Venczel, Z.S. Sagi, L. Gajdos, Z. Kristof, P. Vagi &  L. Zatyko. 2006. Production of doubled haploid breeding lines in case of paprika, spice paprika, eggplant, cucumber, zucchini and onion. ActaHortic. 725:845–854. [Google Scholar]
  11. Germana, M. A. (2011). Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant cell reports, 30(5), 839-857. [Google Scholar]
  12. Karakullukçu, Ş., & Abak, K. (1992). The response of some eggplant cultivars to anther culture. Ankara Üniversitesi Ziraat Fak Yıllığı, 42, 7-12. [Google Scholar]
  13. Kasperbauer, M. J., & Wilson, H. M. (1979). Haploid plant production and use. Nicotiana procedures for experimental use. Washington, DC: USDA Technol. Bul, 1586, 33-39. [Google Scholar]
  14. Lauxen, M. D. S., Kaltchuk-Santos, E., Hu, C. Y., Callegari-Jacques, S. M., & Bodanese-Zanettini, M. H. (2003). Association between floral bud size and developmental stage in soybean microspores. Brazilian Archives of Biology and Technology, 46, 515-520. [Google Scholar]
  15. Matsubara, S., Hu, K., & Murakami, K. (1992). Embryoid and callus formation from pollen grains of eggplant and pepper by anther culture. Journal of the Japanese Society for Horticultural Science, 61(1), 69-77. [Google Scholar]
  16. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497. [Google Scholar]
  17. Raghavan, V. (1986). Embryogenesis in angiosperms: a developmental and experimental study (Vol. 17). CUP Archive. [Google Scholar]
  18. Raina, S. K., & Iyer, R. D. (1973). Differentiation of diploid plants from pollen callus in anther cultures of Solanum melongena L. Z Pflanzenzucht. [Google Scholar]
  19. Reynolds, T. L. (1997). Pollen embryogenesis. Plant molecular biology, 33(1), 1-10. [Google Scholar]
  20. Rotino, G. L., Falavigna, A., & Restaino, F. (1987). Production of anther-derived plantlets of eggplant (No. RESEARCH). [Google Scholar]
  21. Rotino, G. L., Restaino, F., Gjomarkaj, M., Massimo, M., Falavigna, A., Schiavi, M., & Vicini, E. (1990). Evaluation of genetic variability in embryogenetic and androgenetic lines of eggplant. In Vitro Culture, XXIII IHC 300, 357-362. [Google Scholar]
  22. Rotino, G. L. (1996). Haploidy in eggplant. In In vitro haploid production in higher plants (pp. 115-141). Springer, Dordrecht. [Google Scholar]
  23. Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2), 261-274. [Google Scholar]
  24. Salas, P., Rivas-Sendra, A., Prohens, J., & Seguí-Simarro, J. M. (2012). Influence of the stage for anther excision and heterostyly in embryogenesis induction from eggplant anther cultures. Euphytica, 184(2), 235-250. [Google Scholar]
  25. Seguí-Simarro, J. M., & Nuez, F. (2005). Meiotic metaphase I to telophase II as the most responsive stage during microspore development for callus induction in tomato (Solanum lycopersicum) anther cultures. Acta Physiologiae Plantarum, 27(4), 675-685. [Google Scholar]
  26. Seguí‐Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore‐derived embryogenesis. Physiologia Plantarum, 134(1), 1-12. [Google Scholar]
  27. Seguí-Simarro, J. M., Corral-Martínez, P., Parra-Vega, V., & González-García, B. (2011). Androgenesis in recalcitrant solanaceous crops. Plant Cell Reports, 30(5), 765-778. [Google Scholar]
  28. Soriano, M., Li, H., & Boutilier, K. (2013). Microspore embryogenesis: establishment of embryo identity and pattern in culture. Plant reproduction, 26(3), 181-196. [Google Scholar]
  29. Summers, W. L., Jaramillo, J., & Bailey, T. (1992). Microspore developmental stage and anther length influence the induction of tomato anther callus. HortScience, 27(7), 838-840. [Google Scholar]
  30. Touraev, A., Pfosser, M., & Heberle-Bors, E. (2001). The microspore: a haploid multipurpose cell. [Google Scholar]
  31. Tuberosa, R., Sanguineti, M. C., & Conti, S. (1987). Anther culture of egg-plant (Solanum melongena L.) lines and hybrids. Genética Agrária, 41(3), 267-274. [Google Scholar]
  32. Tuna,  M.  2015. Flow sitometri ve tarımsal araştırmalarda kllanımı. 3. Flow Sitometri ve Tarımsal Araştırmalarda Kullanımı Uygulamalı Eğitim Programı, Seminer Notları. Namık Kemal Üniversitesi, (yayınlanmamış), Tekirdağ (in Turkish). [Google Scholar]