International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2021, Vol. 5(4) 251-262

Evaluation of Antibacterial Potency of Endophytic Fungi Isolated from Mentha piperita

Lawal Garba, Abdulhamid Abdulfatah, M.T. Adamu, H. Ismail, I. Yusuf & A.S. Dahiru

pp. 251 - 262   |  DOI: https://doi.org/10.29329/ijiasr.2021.414.6

Published online: December 31, 2021  |   Number of Views: 81  |  Number of Download: 589


Abstract

The Mentha piperita is an aromatic perennial herb, a member of the family Lamiaceae (Labiatae) that produces creeping stolons, growing in the range of 45 to 80 cm tall. Fungal endophytes reside in the healthy plant tissues to produce several metabolic products such as plants growth hormones, anti-phagocytes to biological feeding, medicinal ingredients, and many products of biological activities. Hence, they are regarded as a reservoir of active metabolites for the development of novel drugs. Although, many endophytic fungi have been reported from different plants, reports on fungal endophytes from M. piperita are very limited. In this study, fungal endophytes from the leaf and stem of M. piperita were successfully evaluated for their potential antibacterial properties. Healthy leaves of the peppermint were prepared and cultured on potato dextrose agar (PDA) plates for 5 to 7 days at 28 oC until fungal colonies appeared. Fifteen (15) fungal isolates were identified based on cultural and morphological characteristics and had six (6) rapid growing species, namely Aspergillus fumigatus, Rhizopus arrhizus, Aspergillus flavus, Fusarium oxysporum, Aspergillus niger, Alternaria alternate which were selected and evaluated their crude metabolites against c using agar well diffusion method. The susceptibility study showed a remarkable in vitro antibacterial activity of the fungal crude metabolites against all the test bacteria which increased with an increased incubation time of 7, 14 and 21 days incubation. However, the fungi displayed maximal zone of growth inhibition after 21 days of incubation. In conclusion, fungal endophytes were isolated from M. piperita and evaluated in vitro antibacterial activity of their crude metabolites against the test bacterial isolates.

Keywords: Antibacterial potential, Endophytic Fungi, Mentha piperita, Test bacteria, Bioassay


How to Cite this Article

APA 6th edition
Garba, L., Abdulfatah, A., Adamu, M., Ismail, H., Yusuf, I. & Dahiru, A. (2021). Evaluation of Antibacterial Potency of Endophytic Fungi Isolated from Mentha piperita . International Journal of Innovative Approaches in Science Research, 5(4), 251-262. doi: 10.29329/ijiasr.2021.414.6

Harvard
Garba, L., Abdulfatah, A., Adamu, M., Ismail, H., Yusuf, I. and Dahiru, A. (2021). Evaluation of Antibacterial Potency of Endophytic Fungi Isolated from Mentha piperita . International Journal of Innovative Approaches in Science Research, 5(4), pp. 251-262.

Chicago 16th edition
Garba, Lawal, Abdulhamid Abdulfatah, M.T. Adamu, H. Ismail, I. Yusuf and A.S. Dahiru (2021). "Evaluation of Antibacterial Potency of Endophytic Fungi Isolated from Mentha piperita ". International Journal of Innovative Approaches in Science Research 5 (4):251-262. doi:10.29329/ijiasr.2021.414.6.

References
  1. Bellassoued, K., Hsouna, A. B., Athmouni, K., van Pelt, J., Ayadi, F. M., Rebai, T., & Elfeki, A. (2018). Protective effects of Mentha piperita L. leaf essential oil against CCl 4 induced hepatic oxidative damage and renal failure in rats. Lipids in Health and Disease, 17(1), 1–14. [Google Scholar]
  2. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. [Google Scholar]
  3. Bogner, C. W., Kamdem, R. S., Sichtermann, G., Matthäus, C., Hölscher, D., Popp, J., Proksch, P., Grundler, F. M., & Schouten, A. (2017). Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnology, 10(1), 175–188. [Google Scholar]
  4. Cheesbrough, M. (2005). District laboratory practice in tropical countries, part 2. Cambridge university press. [Google Scholar]
  5. Chowdhary, K., & Kaushik, N. (2018). Biodiversity study and potential of fungal endophytes of peppermint and effect of their extract on chickpea rot pathogens. Archives of Phytopathology and Plant Protection, 51(3–4), 139–155. [Google Scholar]
  6. Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582. [Google Scholar]
  7. Deshmukh, S. K., Verekar, S. A., & Bhave, S. V. (2014). Endophytic fungi: a reservoir of antibacterials. Front Microbiol 5: 715. [Google Scholar]
  8. Du, W., Yao, Z., Li, J., Sun, C., Xia, J., Wang, B., Shi, D., & Ren, L. (2020). Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta. PloS One, 15(3), e0229589. [Google Scholar]
  9. Ferri, M., Ranucci, E., Romagnoli, P., & Giaccone, V. (2017). Antimicrobial resistance: a global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, 57(13), 2857–2876. [Google Scholar]
  10. Garba, L., Abba, H., Adamu, Z. Y., Muhammed, I., Adamu, M. T., Aisami, A., Yusha’u, M., & Tahir, F. (2020). Isolation and Evaluation of In vitro Antibacterial Potential of Endophytic Fungi from the leaves of Psidium guajava (Guava). Bayero Journal of Pure and Applied Sciences, 13(1), 20–24. [Google Scholar]
  11. Garba, L., Lawan, H. S., Puma, H. U., Abdullahi, M. M., Yusuf, I., & Mukhtar, M. D. (2019). Phytochemical Screening and in vitro Bacteriostatic Effects of Syzigium aromaticum (Clove) Extracts on Clinical Bacterial Isolates. Journal of Biochemistry, Microbiology and Biotechnology, 7(1), 5–9. [Google Scholar]
  12. Garba, L., Muhammad, M. B., Adamu, M. T., Isa, S., Abdullahi, M. M., & Yarma, A. A. (2021). Potential in vitro Inhibitory effects of Moringa oleifera Leaf extracts on Extended-Spectrum β-Lactamase-producing Bacteria. Journal of Fundamental and Applied Sciences, 13(1), 137–150. [Google Scholar]
  13. Garba, L., Yusha’u, M., Abdullahi, M. M., Abubakar, M. U., Inuwa, A. B., Isa, S., & Adamu, M. T. (2018). Effectiveness of Double Discs Synergy Test in the Confirmation of Extended Spectrum β-lactamase (ESβL) Production. Journal of Biochemistry, Microbiology and Biotechnology, 6(2), 15–18. [Google Scholar]
  14. Handayani, D., Rivai, H., Hutabarat, M., & Rasyid, R. (2017). Antibacterial activity of endophytic fungi isolated from mangrove plant Sonneratia griffithii Kurz. Journal of Applied Pharmaceutical Science, 7(04), 209–212. [Google Scholar]
  15. Heywood, V. H., Moore, D. M., Richardson, I. B. K., & Stearn, W. T. (1993). Flowering plants of the world. Oxford university press. [Google Scholar]
  16. Inuwa, A. B., Maryam, Y. A., Arzai, A. H., Hafsat, Y. B., Kawo, A. H., Usman, A. U., Ama, S. J., & Ibrahim, K. H. (2017). Distribution of culturable endophytic bacteria in lemon grass (Cymbopogon citratus). Bayero Journal of Pure and Applied Sciences, 10(1), 95–98. [Google Scholar]
  17. Jia, M., Chen, L., Xin, H.-L., Zheng, C.-J., Rahman, K., Han, T., & Qin, L.-P. (2016). A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Frontiers in Microbiology, 7, 906. [Google Scholar]
  18. Kalyanasundaram, I., Nagamuthu, J., & Muthukumaraswamy, S. (2015). Antimicrobial activity of endophytic fungi isolated and identified from salt marsh plant in Vellar Estuary. Journal of Microbiology and Antimicrobials, 7(2), 13–20. [Google Scholar]
  19. Khalil, A. F., Elkatry, H. O., & El Mehairy, H. F. (2015). Protective effect of peppermint and parsley leaves oils against hepatotoxicity on experimental rats. Annals of Agricultural Sciences, 60(2), 353–359. [Google Scholar]
  20. Leck, A. (1999). Preparation of lactophenol cotton blue slide mounts. Community Eye Health, 12(30), 24. [Google Scholar]
  21. Liang, H., Xing, Y., Chen, J., Zhang, D., Guo, S., & Wang, C. (2012). Antimicrobial activities of endophytic fungi isolated from Ophiopogon japonicus (Liliaceae). BMC Complementary and Alternative Medicine, 12(1), 1–6. [Google Scholar]
  22. Loolaie, M., Moasefi, N., Rasouli, H., & Adibi, H. (2017). Peppermint and its functionality: A review. Arch Clin Microbiol, 8(4), 54. [Google Scholar]
  23. Manganyi, M. C., Regnier, T., Tchatchouang, C.-D. K., Bezuidenhout, C. C., & Ateba, C. N. (2019). Antibacterial activity of endophytic fungi isolated from Sceletium tortuosum L.(Kougoed). Annals of Microbiology, 69(6), 659–663. [Google Scholar]
  24. Marcellano, J. P., Collanto, A. S., & Fuentes, R. G. (2017). Antibacterial activity of endophytic fungi isolated from the bark of Cinnamomum mercadoi. Pharmacognosy Journal, 9(3). [Google Scholar]
  25. Mishra, V. K., Passari, A. K., Chandra, P., Leo, V. V., Kumar, B., Uthandi, S., Thankappan, S., Gupta, V. K., & Singh, B. P. (2017). Determination and production of antimicrobial compounds by Aspergillus clavatonanicus strain MJ31, an endophytic fungus from Mirabilis jalapa L. using UPLC-ESI-MS/MS and TD-GC-MS analysis. PloS One, 12(10), e0186234. [Google Scholar]
  26. Mwanga, Z., Mvungi, E., & Tibuhwa, D. (2019). Antimicrobial activities of endophytic fungi secondary metabolites from Moringa oleifera (Lam). Tanzania Journal of Science, 45(3), 463–476. [Google Scholar]
  27. Na, R., Jiajia, L., Dongliang, Y., Yingzi, P., Juan, H., Xiong, L., Nana, Z., Jing, Z., & Yitian, L. (2016). Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae. Microbiological Research, 192, 114–121. [Google Scholar]
  28. Saharkhiz, M. J., Motamedi, M., Zomorodian, K., Pakshir, K., Miri, R., & Hemyari, K. (2012). Chemical composition, antifungal and antibiofilm activities of the essential oil of Mentha piperita L. International Scholarly Research Notices, 2012. [Google Scholar]
  29. Sandhu, S. S., Kumar, S., & Aharwal, R. P. (2014). Isolation and identification of endophytic fungi from Ricinus communis Linn. and their antibacterial activity. Int. J. Res. Pharm. Chem, 4(3), 611–618. [Google Scholar]
  30. Watanabe, T. (2002). Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC press. [Google Scholar]
  31. Yuan, Y., Feng, H., Wang, L., Li, Z., Shi, Y., Zhao, L., Feng, Z., & Zhu, H. (2017). Potential of endophytic fungi isolated from cotton roots for biological control against verticillium wilt disease. PLoS One, 12(1), e0170557. [Google Scholar]
  32. Zhu, M., Zhang, X., Feng, H., Che, Q., Zhu, T., Gu, Q., & Li, D. (2016). Campyridones A–D, pyridone alkaloids from a mangrove endophytic fungus Campylocarpon sp. HDN13-307. Tetrahedron, 72(37), 5679–5683. [Google Scholar]