International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article | International Journal of Innovative Approaches in Science Research 2021, Vol. 5(3) 123-138

Doğal Klinoptilolit/ CZA Hibrit Katalizörünü Kullanarak Sentez Gazından Dimetileterin Tek Adımda Sentezi: Katalizör Oranının Etkileri

Savaş Gürdal & Muzaffer Yasar

pp. 123 - 138   |  DOI: https://doi.org/10.29329/ijiasr.2021.379.2

Published online: October 11, 2021  |   Number of Views: 9  |  Number of Download: 20


Abstract

Bu çalışmada, sentez gazından doğrudan dimetileter (DME) eldesi kapsamında ülkemizde bulunan klinoptilolit doğal zeolitinden yola çıkılarak D-Klinoptilolit (DK) isimli yeni katalizör sentezlenmiştir. Sentezlenen bu katalizör CuO/ZnO/Al2O3 (CZA) katalizörü ile 1/3 ve 2/1 oranında modifiye edilerek yeni katalizör bileşimleri elde edilmiştir. DME eldesi için sisteme besleme yapılacak olan gazların bileşimi % hacimce sırasıyla H2/CO/CO2/N2 = 36/18/10/36 olacak şekilde sisteme beslenmiştir. Gaz bileşimi oranları ile 2 farklı katalizör bileşimi, sabit yataklı, yüksek basınçlı ve sürekli akışlı reaksiyon sisteminde 250 °C, 275 °C ve 300 °C sıcaklıklarda, 30 ve 40 bar basınç altında ve 30,60,90 ve 120 dakikalarda aktivite testlerine tabi tutulmuştur. Katalizörlerin ve doğal zeolitin karakterizasyonu amacıyla X-işini difraktometresi (XRD), Yüzey Alanı Ölçüm Cihazı (BET), Termogravimetrik Analiz (TGA), Fourier Dönüşümlü Kizilötesi (FTIR) analizleri gerçekleştirilmiştir. Çalışmalarda 2 farklı oranda hazırlanan katalizör bileşimlerinin, farklı reaksiyon süreleri, reaksiyon basıncı ve reaksiyon sıcaklıklarında dimetileter seçiciliği (SDME) ve toplam karbon dönüşümüne (XC) etkileri incelenmiştir. DK+CZA (ağırlıkça 3/1) katalizör bileşimi 30 bar basınçta en yüksek % 69,5 olarak DME seçiciliğinde ürünler 250 °C’ de gerçekleşmiş olup, aynı sıcaklıkta zaman geçtikçe azalmıştır. Sıcaklık 275 ve 300 °C’ye çıktığında da başlangıçta DME seçiciliği tekrar artarken, aynı sıcaklıkta zaman ilerledikçe tekrar DME seçicilik oranında düşüş görünmüştür. DK+CZA (1/2) katalizör bileşimi 3 farklı sıcaklık ve sürelerde %10’un biraz üzerinde % DME seçiciliği sonuçlarını vermiştir. 40 bar basınçta ise DK+CZA (3/1) ve DK+CZA (1/2) oranındaki katalizör bileşimlerinin 250 °C ’de DME seçicikleri % 80’in üzerindedir. Çalışmalar sonucunda, katalizörlerin DME seçicilikleri karşılaştırıldığında DK+CZA (3/1) katalizör bileşiminin DME seçiciliğinin DK+CZA (1/2) katalizör bileşiminden daha fazla olduğu görülmüştür.

Keywords: Sentez Gazı, Dimetileter, Klinoptilolite, Katalizör, Enerji


How to Cite this Article?

APA 6th edition
Gurdal, S. & Yasar, M. (2021). Doğal Klinoptilolit/ CZA Hibrit Katalizörünü Kullanarak Sentez Gazından Dimetileterin Tek Adımda Sentezi: Katalizör Oranının Etkileri . International Journal of Innovative Approaches in Science Research, 5(3), 123-138. doi: 10.29329/ijiasr.2021.379.2

Harvard
Gurdal, S. and Yasar, M. (2021). Doğal Klinoptilolit/ CZA Hibrit Katalizörünü Kullanarak Sentez Gazından Dimetileterin Tek Adımda Sentezi: Katalizör Oranının Etkileri . International Journal of Innovative Approaches in Science Research, 5(3), pp. 123-138.

Chicago 16th edition
Gurdal, Savas and Muzaffer Yasar (2021). "Doğal Klinoptilolit/ CZA Hibrit Katalizörünü Kullanarak Sentez Gazından Dimetileterin Tek Adımda Sentezi: Katalizör Oranının Etkileri ". International Journal of Innovative Approaches in Science Research 5 (3):123-138. doi:10.29329/ijiasr.2021.379.2.

References
  1. D. Mao, Weimin Yang, Jianchao Xia, Bin Zhang, Qingying Song, Qingling Chen, (2005), Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component, Journal of Catalysis, Volume 230, Issue 1, Pages 140-149 https://doi.org/10.1016/j.jcat.2004.12.007 [Google Scholar] [Crossref] 
  2. F.S. Ramos, A.M. Duarte de Farias, L.E.P. Borges, J.L. Monteiro, M.A. Fraga, E.F. Sousa-Aguiar, L.G. (2005), Appel, Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures, Catalysis Today, Volume 101, Issue 1, Pages 39-44. https://doi.org/10.1016/j.cattod.2004.12.007 [Google Scholar] [Crossref] 
  3. Jang Jaeyong; Kim, Gil-Pyo;Chang, Tae Sun; Kim, Beom-Sik; Shim, Sang Eun; Park, Seok Hoon; Baeck, Sung-Hyeon; (2016), Preparation of Nanostructured CuO/ZnO/Al2O3 Catalysts for the Synthesis of Methanol from Syngas Journal of Nanoscience and Nanotechnology,V:16,N:10,pp.10887-10891(5) https://doi.org/10.1166/jnn.2016.13258 [Google Scholar] [Crossref] 
  4. Ji-Hyun Kim, Min Jo Park, Sun Jin Kim, Oh-Shim Joo, Kwang-Deog Jung, (2004), DME synthesis from synthesis gas on the admixed catalysts of Cu/ZnO/Al2O3 and ZSM-5, Applied Catalysis A: General, Volume 264, Issue 1, Pages 37-41 https://doi.org/10.1016/j.apcata.2003.12.058. [Google Scholar] [Crossref] 
  5. J.-L. Li, X.-G. Zhang, T. Inui, (1996), Improvement in the catalyst activity for direct synthesis of dimethyl ether from synthesis gas through enhancing the dispersion of CuO/ZnO/γ-Al2O3 in hybrid catalysts, Applied Catalysis A: General, Volume 147, Issue 1,1996, Pages 23-33, https://doi.org/10.1016/S0926-860X(96)00208-6 [Google Scholar] [Crossref] 
  6. Khoshbin, R., Haghighi, M. (2013), Direct syngas to DME as a clean fuel: the benefical use of ultrasound for the preparation of CuO-ZnO-Al2O3/HZSM-5 Chemical Engineering Research and Design, 91, 1111-1122.  https://doi.org/10.1016/j.cherd.2012.11.017 [Google Scholar] [Crossref] 
  7. Wang, L., Qi, Y., Wei, Y. et al. (2006), Research on the Acidity of the Double-function Catalyst for DME Synthesis from Syngas. Catal Lett 106, 61–66 https://doi.org/10.1007/s10562-005-9191-6. [Google Scholar] [Crossref] 
  8. Xiangang Ma, Qingjie Ge, Junguo Ma, Hengyong Xu, (2013), Synthesis of LPG via DME from syngas in two-stage reaction system, Fuel Processing Technology, Volume 109, Pages 1-6, https://doi.org/10.1016/j.fuproc.2013.01.002. [Google Scholar] [Crossref] 
  9. Nie R., Hong Lei, Saiyong Pan, Lina Wang, Jinhua Fei, Zhaoyin Hou, (2012), Core–shell structured CuO–ZnO@H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether, Fuel, Volume 96, Pages 419-425, https://doi.org/10.1016/j.fuel.2011.12.048 [Google Scholar] [Crossref] 
  10. Qingjie Ge, Youmei Huang, Fengyan Qiu, Shuben Li, (1998) , Bifunctional catalysts for conversion of synthesis gas to dimethyl ether, Applied Catalysis A: General, Volume 167, Issue 1, Pages 23-30, https://doi.org/10.1016/S0926-860X(97)00290-1 [Google Scholar] [Crossref] 
  11. Semelsberger T.A., Borup R.L., Greene H.L., (2006), Dimethyl Ether (DME) as an Alternative Fuel, Journal of Power Sources, 156: 497–511. https://doi.org/10.1016/j.jpowsour.2005.05.082 [Google Scholar] [Crossref] 
  12. Sierra I., Ereña J., Aguayo A.T., Arandes J.M., Bilbao J., (2010), Regeneration of CuO-ZnO-Al2O3/γ-Al2O3 Catalyst in the Direct Synthesis of Dimethyl Ether, Applied Catalysis B: Environmental, 94: 108–116. https://doi.org/10.1016/j.apcatb.2009.10.026 [Google Scholar] [Crossref] 
  13. Sousa R., A.M. Duarte de Farias, L.E.P. Borges, J.L. Monteiro, M.A. Fraga, E.F. Sousa-Aguiar, L.G. Appel, (2005), Role of dehydration catalyst acid properties on one-step DME synthesis over physical mixtures, Catalysis Today, Volume 101, Issue 1, Pages 39-44, https://doi.org/10.1016/j.cattod.2004.12.007. [Google Scholar] [Crossref] 
  14. Yaşar M., Okur.O., Sarıoglan A., Alibeyli R., Behmenyar G., Kiris B., (2017), Doğal Zeolit Katalizör Hazırlanması ve Bu Katalizör Kullanılarak Gerçekleştirilen Metil Alkolden Dimetil Eter Üretim Yöntemi, Türk Patent ve Marka Kurumu, TP 2017/ 17129 [Google Scholar]
  15. Yoon E.S., Han C., (2009), A Review of Sustainable Energy - Recent Development and Future Prospects of Dimethyl Ether (DME), 10th International Symposium on Process Systems Engineering - PSE2009, 27: 169–175. DOI:10.1016/S1570-7946(09)70249-4 [Google Scholar]
  16. Zha F., Ding J., Chang Y., Ding J., Wang J., Ma J., (2012), Cu-Zn-Al Oxide Cores Packed by Metal-Doped Amorphous Silica-Alumina Membrane for Catalyzing the Hydrogenation of Carbon Dioxide to Dimethyl Ether, Industrial & Engineering Chemistry Research, 51: 345–352. https://doi.org/10.1021/ie202090f [Google Scholar] [Crossref] 
  17. Jang, Jaeyong; Kim, Gil-Pyo;Chang, Tae Sun; Kim, Beom-Sik; Shim, Sang Eun; Park, Seok Hoon; Baeck, Sung-Hyeon; (2016), Preparation of Nanostructured CuO/ZnO/Al2O3 Catalysts for the Synthesis of Methanol from Syngas Journal of Nanoscience and Nanotechnology, V: 16,N:10, pp. 10887-10891(5) DOI: https://doi.org/10.1166/jnn.2016.13258 [Google Scholar] [Crossref]