International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Review article    |    Open Access
International Journal of Innovative Approaches in Science Research 2021, Vol. 5(2) 84-103

Recent Developments on Aroma Biochemistry in Fresh Fruits

Murat Şeker, Mehmet Ali Gündoğdu, Neslihan Ekinci & Engin Gür

pp. 84 - 103   |  DOI: https://doi.org/10.29329/ijiasr.2021.357.5

Published online: July 02, 2021  |   Number of Views: 110  |  Number of Download: 462


Abstract

For fresh fruits to be consumed and relished, they have to stimulate the senses of taste and smell as well as have good visual properties. In terms of the consumption of a fruit, its aroma, which constitutes the taste and odor elements, is of major importance. Therefore, the wish of consumers to eat fresh fruits is largely due to their rich aroma. The components of aroma that are found in fruits, in very low concentrations, such as ppm or ppb, can easily be perceived sensorially. Flavor, usually composed of volatile compounds, is an important criterion that enhances the appeal of fresh fruits. The aroma in fruits is composed of dozens of compounds in different concentrations. Many researchers have reported that the components of fruit aroma are caused by aldehydes, esters, alcohols, lactones, ketones, terpenoids, and other chemical compounds. The features that make these volatile compounds significant and unite them at a common point are that, even in trace amounts, they are perceived by the senses, and play an extremely effective role on the quality of the fruit. Aroma formation and development takes place in fresh fruits under highly dynamic processes. In this review, aroma biochemistry in fresh fruits and the factors affecting this dynamic process are discussed.

Keywords: Active aroma compounds, Aroma biosynthesis, Fruit quality.


How to Cite this Article

APA 6th edition
Seker, M., Gundogdu, M.A., Ekinci, N. & Gur, E. (2021). Recent Developments on Aroma Biochemistry in Fresh Fruits . International Journal of Innovative Approaches in Science Research, 5(2), 84-103. doi: 10.29329/ijiasr.2021.357.5

Harvard
Seker, M., Gundogdu, M., Ekinci, N. and Gur, E. (2021). Recent Developments on Aroma Biochemistry in Fresh Fruits . International Journal of Innovative Approaches in Science Research, 5(2), pp. 84-103.

Chicago 16th edition
Seker, Murat, Mehmet Ali Gundogdu, Neslihan Ekinci and Engin Gur (2021). "Recent Developments on Aroma Biochemistry in Fresh Fruits ". International Journal of Innovative Approaches in Science Research 5 (2):84-103. doi:10.29329/ijiasr.2021.357.5.

References
  1. Angerosa, F., (2000). Sensory quality of olive oils. In: J., Harwood and R. Aparicio (Eds.) Handbook of Olive Oil: Analysis and Properties, Aspen Publications Inc Gaithersburg, MD, USA. pp. 355–392. [Google Scholar]
  2. Anonymous. (2013). http://tr.wikipedia.org/wiki/Terpen (Date accessed: 12.12.2020) [Google Scholar]
  3. Aparicio, R. & Morales, M.T., (1998). Characterization of Olive Ripeness by Green Aroma Compounds of Virgin Olive Oil. Journal of Agriculture and Food Chemistry, 46(3), 1116–1122. [Google Scholar]
  4. Aprea, E., Corollaro, M.L., Betta, E., Endrizzi, I., Dematte, M.L., Biasioli, F. & Gasperi, F. (2012). Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavor. Food Research International. 49(2), 677-686. [Google Scholar]
  5. Argenta, L.C., Fan, X.T. & Mattheis, J.P. (2003). Influence of 1–methylcyclopropene on ripening, storage life, and volatile production by d’Anjou cv. pear fruit. J Agric Food Chem 51, 3858 – 3864. [Google Scholar]
  6. Aubert C & Milhet C. (2007). Distribution of the volatile compounds in the different parts of a white - fleshed peach (Prunus persica L. Batsch) . Food Chem 102, 375 – 384. [Google Scholar]
  7. Baietto, M & Wilson, A.D. (2015). Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors. 15(1), 899-931. [Google Scholar]
  8. Baldwin, E.A. (2002). Fruit flavor, volatile metabolism and consumer perceptions. In Knee M (ed.), Fruit Quality and Its Biological Basis. Boca Raton, FL: CRC Press, pp. 89–106. [Google Scholar]
  9. Baytin R. & Keskin N. (2018). Determination of Aroma Compounds in Ercis Grape Cultivar. Acta Biologica Turcica. 31(2), 49–55. [Google Scholar]
  10. Berger, R.G. (2007). Flavours and Fragrances — Chemistry, Bioprocessing and Sustainability. Berlin: Springer – Verlag [Google Scholar]
  11. Berry, R.E., Shaw, P.E., Tatum, J.H. & Wilson, C.W. III. (1983). Citrus oil flavor and composition studies. Food Technol 37, 88–91. [Google Scholar]
  12. Boudhrioua, N., Giampaoli, P. & Bonazzi, C. (2003). Changes in aromatic components of banana during ripening and air – drying. Lebensm Wiss Technol 36, 633 – 642. [Google Scholar]
  13. Buettner, A, Mestres, M, Fischer, A, Guasch, J & Schieberle, P. (2003). Evaluation of the most odour–active compounds in the peel oil of clementines (Citrus reticulata Blanco cv. clementine). Eur Food Res Technol 216(10), 11–14. [Google Scholar]
  14. Cabaroglu, T. (1995). Nevşehir–Ürgüp Yöresinde Yetiştirilen Beyaz Emir Üzümünün ve Bu Üzümden Elde Edilen Şarapların Aroma Maddeleri Üzerinde Araştırmalar. Doktora Tezi. Çukurova Üniversitesi, Turkey. [Google Scholar]
  15. Cevik, S., Ozkan, G. & Kiralan, M. (2016). Optimization of malaxation process of virgin olive oil using desired and undesired volatile contents. LWT, 73, 514-523. [Google Scholar]
  16. Cevik, S., Ozkan, G., Kiralan, M. & Bayrak, A. (2013). Effect of Harvest Time on Physicochemical Quality Parameters, Oxidation Stability and Volatile Compounds of Extra Virgin Olive Oil. ACTA Alimentaria, 43(4), 1–12. Doi: 10.1556/AAlim.2013.0002. [Google Scholar]
  17. Chai, Q., Wu, B., Liu, W., Wang, L., Yang, C., Wang, Y., Fang, J., Liu, Y. & Li, S. (2012). Volatiles of Plums Evaluated by HS-SPME with GC–MS at the Germplasm Level. Food Chemistry, 130(2), 432-440. [Google Scholar]
  18. Chida, M., Yamashita, K., Izumiya, Y., Watanabe, K. & Tamura, H. (2006). Aroma impact compounds in three Citrus oils: Cross–matching test and correspondence analysis approach . J Food Sci 71(1), 54-58. [Google Scholar]
  19. Correia, S., Schouten, R., Silva, A.P. & Gonçalves, B. (2017). Factors Affecting Quality and Health Promoting Compounds during Growth and Postharvest Life of Sweet Cherry (Prunus avium L.). Front. Plant Sci. 8:2166: 1-15. [Google Scholar]
  20. Dianne, A. & Hyson, A. (2011). Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health, Advances in Nutrition, 2(5), 408–420. [Google Scholar]
  21. Dixon, J. & Hewett, E.W. (2000). Factors affecting apple aroma/flavour volatile concentration: A review. N Z J Crop Hortic Sci 28, 155–173. [Google Scholar]
  22. Ekinci N., Seker M. & Gundogdu M.A. (2016). Effects of Post-Harvest Dippings of Calcium Oxide on Aroma Volatile Compound of Pink Lady Apple Cultivar. Proceedings of VII International Scientific Agriculture Symposium, "Agrosym 2016", (6-9 October 2016, Jahorina-Bosnia and Herzegovina), 1325-1331. [Google Scholar]
  23. Ekinci, N., Aydın, F. & Seker, M. 2013. Investigation of cold storage conditions of Arbutus unedo L. fruits. The Journal of Ege University Faculty of Agriculture. Special Issue ISSN 1018-8851, Volume I, 47-51. [Google Scholar]
  24. El Hadi, M.A.M., Zhang, F.J., Wu, F.F., Zhou, C.H., Tao, J. (2013). Advances in Fruit Aroma Volatile Research. Molecules, 18, 8200-8229. [Google Scholar]
  25. El-Mogy, M. M., Ali, M.R., Darwish, O.S. & Rogers, H.J. (2019). Impact of Salicylic Acid, Abscisic Acid, and Methyl Jasmonate on Postharvest Quality and Bioactive Compounds of Cultivated Strawberry Fruit. Journal of Berry Research 9(2), 333 – 348. [Google Scholar]
  26. Espino-Diaz, M., Sepulveda, D.R., Gonzalez-Aguilar, G. & Olivas, G.I. (2016). Biochemistry of Apple Aroma: A Review. Food Technol. Biotechnol. 54 (4), 375–394. [Google Scholar]
  27. Fellman, J.K., Miller, T.W., Wattinson, D.S. & Matthesis, J.P. (2000). Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience 35, 1026 – 1033. [Google Scholar]
  28. Forney, C.F., Jordan, M.A., Nicolas, K.U.K.G. & De Ell, J.R. (2000-b). Volatile emissions and chlorophyll fluorescence as indicators of freezing injury in apple fruit. HortScience 35, 1283-1287. [Google Scholar]
  29. Forney, C.F., Kalt, W. & Jordan, M.A. (2000-a). The Composition of Strawberry Aroma is Influenced by Cultivar, Maturity, and Storage. HortScience 35, 1022–1026. [Google Scholar]
  30. Gaffney, B., Havekotte, M., Jacobs, B. & Costa, L. (1996). Charm analysis of two Citrus sinensis peel oil volatiles. Perfumer and Flavorist 21, 1–2, 4–5. [Google Scholar]
  31. Gokbulut, I. & Karabulut, I. (2011). SPME–GC–MS detection of volatile compounds in apricot varieties. Food Chem. doi:10.1016/J. Food Chem.2011.11.080. [Google Scholar] [Crossref] 
  32. Gomez, E., Ledbetter, C. A. & Hartsell, P. L. 1993. Volatile compounds in apricot, plum and their interspecific hybrids. J. Agric. Food Chem. 41, 1669-1676. [Google Scholar]
  33. González-Mas, M.C., Rambla, J.L., López-Gresa, M.P., Blázquez, M.A. & Granell, A. (2019). Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 10 (12), 1-18. [Google Scholar]
  34. Guichard, E., Schlick, P & Issanchou, S. (1990). Composition of apricot aroma: Correlations between sensory and instrumental data. J. Food Sci. 55, 735-138. [Google Scholar]
  35. Gundogdu, M.A. & Nergis, O. (2020). Edremit Körfezi ile Bayramiç Kazdağları Yörelerinden Elde Edilen Zeytinyağların Kimyasal Özellikleri ve Aroma Bileşenlerinin Karşılaştırılması. ÇOMÜ LJAR, 1(2), 101-117. [Google Scholar]
  36. Gundogdu, M.A. & Seker, M. (2020). Geyikli Yöresi Zeytinyağlarının Bazı Kimyasal Özellikleri ile Uçucu Bileşenlerinin Belirlenmesi. ÇOMÜ LJAR, 1(1), 69-79. [Google Scholar]
  37. Gundogdu, M.A., 2018. Change in Pomological and Biochemical Characteristics of Some Olive Cultivars at Different Maturity Stages (In Turkish). Ph. D. Thesis. COMU, Türkiye. [Google Scholar]
  38. Gundogdu, M.A., Ekinci, N., Kaleci, N. & Seker, M. (2018). Determination of Aromatic Compounds of Some Promising Pomegranate Genotypes, Ecological Life Sciences (NWSAELS), 13(3), 142-150.  [Google Scholar]
  39. Gundogdu, M.A., Gur, E. & Seker, M. (2021). Comparison of Aroma Compounds and Pomological Characteristics of The Fruits of 'cv. Mondial Gala' and Local Apple Genotype 'Gelin' Cultivated in Çanakkale, Turkey. JOTAF, 18(1), 10-20. [Google Scholar]
  40. Gundogdu, M.A., Sakaldas, M., Kaynas, K. & Seker, M. (2020). Determination of the Effects of Ecological Differences on Volatile Compounds in 'Bayramic Beyazi' Nectarine. Acta Hortic. 1297, 285-292 [Google Scholar]
  41. Gur, E. (2019). The effects of different rootstocks on aroma volatile constituents in the fruits of ‘Fuji’ apples (Malus domestica Borkh.). Applied Ecology and Environmental Research 17(5), 11745-11756. [Google Scholar]
  42. Gur, E., Ekinci, N, Gundogdu, M.A. & Seker, M. (2017). Comparison of Fruit Aromatic Compounds of Cardinal Peach, Armking and White Nectarine Varieties (In Turkish). International INES Academic Researches Congress (pp.2200-2207). Antalya, Turkey. [Google Scholar]
  43. Güler, Z. & Gül, E. (2017). Volatile Organic Compounds in The Aril Juices and Seeds from Selected Five Pomegranate (Punica granatum L.) Cultivars, International Journal of Food Properties, 20(2), 281-293. DOI: 10.1080/10942912.2016.1155057 [Google Scholar]
  44. Hakala, M., Lapvetelainen, A.T. & Lallio, H.P. (2002). Volatile compounds of selected strawberry varieties analyzed by purge and trap headspace GC–MS. J Agric Food Chem 50, 1133–1142. [Google Scholar]
  45. Hinterholzer, A. & Schieberle, P. (1998). Identification of the most odour–active volatiles in fresh, hand–extracted juice of Valencia Late oranges by odour dilution techniques. Flav Frag J. 13, 49–55 [Google Scholar]
  46. Horvat, R.J., Chapman, G.W. Jr., Senter, S.D., Robertson, J.A., Okie, W.R. & Norton, J.D. (1992). Comparison of the volatile compounds from several commercial plum cultivars. J Sci Food Agric 60, 21–23. [Google Scholar]
  47. Janecki, T. (2014). Natural Lactones and Lactams. Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany [Google Scholar]
  48. Jayanty, S., Song, J., Rubinstein, N., Chong, A. & Beaudry, R.M. (2002). Temporal relationship between ester biosynthesis and ripening events in bananas. J Am Soc Hortic Sci 127, 998–1005. [Google Scholar]
  49. Jiang, Y. & Song, J. (2010). Fruits and fruit flavor: classification and biological characterization. In: Hui YH, (Ed.). Handbook of fruit and vegetable flavors. Hoboken, New Jersey, USA: John Wiley and Sons Inc.; pp: 3–23. [Google Scholar]
  50. Kader, A. A. (2013). Postharvest Technology of Horticultural Crops–An Overview from Farm to Fork. Ethiopian Journal of Applied Science and Technology, (1), 1-8. [Google Scholar]
  51. Kafkas, E. & Paydas, S. (2007). Evaluation and identification of Volatile Compounds of Some Promising Strawberry Genotypes Using HS-SPME Technique by GC/MS. World Journal of Agricultural Sciences, 3(2), 191–195. [Google Scholar]
  52. Kahle, K., Preston, C., Richling, E., Heckel, F. & Schreier, P. (2005). On-line gas chromatography combustion/pyrolysis isotope ratio mass spectrometry (HRGC - C/P - IRMS) of major volatiles from pear fruit (Pyrus communis) and pear products. Food Chem 91, 449–455. [Google Scholar]
  53. Kalua, C.M. & Boss, P.K. (2010). Comparison of Major Volatile Compounds from Riesling and Cabernet Sauvignon Grapes (Vitis vinifera L.) from Fruit Set to Harvest. Australian Journal of Grape and Wine Research. 16(2), 337–348. [Google Scholar]
  54. Karagoz, S.G., Yilmazer, M., Ozkan, G., Carbonell-Barrachina, A.A., Kıralan, M. & Ramadan, M.F. (2017). Effect of cultivar and harvest time on C6 and C5 volatile compounds of Turkish olive oils. Eur Food Res Technol 243, 1193–1200. [Google Scholar]
  55. Kıralan, M., Ozkan, G., Koyluoglu, F., Ugurlu, H.A., Bayrak, A. & Kiritsakis, A. (2012). Effect of cultivation area and climatic conditions on volatiles of virgin olive oil. Eur. J. Lipid Sci. Technol. 114, 552–557. [Google Scholar]
  56. Kimball, DA. (1991). Citrus Processing: Quality Control and Technology. New York: Van Nostrand Reinhold [Google Scholar]
  57. Kiritsakis, A.K., (1998). Flavor Components of Olive Oil – A Review. JAOCS 75(6), 673–681. [Google Scholar]
  58. Kondo, S. &, Mattheis J. 2006. Aroma volatile biosynthesis in apples at harvest or after harvest affected by jasmonates. Acta Hortic. 712, 381–388. [Google Scholar]
  59. Ladaniya, M.S. (2015). Climate Change Effects on Fruit Quality and Post-Harvest Management Practices. In Choudhary M.L., Patel V.B., Siddiqui M.W., Mahdl S.S. (eds), Climate Dynamics in Horticultural Science, Vol. 1: The Principles and Applications. Apple Academic Press Inc., pp. 263-286. [Google Scholar]
  60. Li, Y., Qi, H., Jin, Y., Tian, X., Sui L. & Qiu Y. (2016). Role of Ethylene in the Biosynthetic Pathway of Related-aroma Volatiles Derived from Fatty Acids in Oriental Sweet Melon, J. Amer. Soc. Hort. Sci., 141(4), 327-338. [Google Scholar]
  61. Lopez ,M.L., Miro, R. & Graell, J. (2001). Quality and Aroma Production of Doyenne du Comice Pears in Relation to Harvest Date and Storage Atmosphere. Food Sci Tech Int. 7(6), 493-500. [Google Scholar]
  62. Lopez, M.L., Lavilla, M.T., Riba, M. & Vendrell, M. (1998). Comparison of Volatile Compounds in Two Seasons in Apples: Golden Delicious and Granny Smith. J Food Q. 21(2), 155-166. [Google Scholar]
  63. Lopez, M.L., Villatoro, C., Fuentes, T., Graell, J., Lara, I. & Echeverria, G. (2007). Volatile Compounds, Quality Parameters and Consumer Acceptance of ‘Pink Lady®’ Apples Stored in Different Conditions. Postharvest Biology and Technology 43 (2007), 55–66. [Google Scholar]
  64. Maarse, H. (1991). Volatile Compounds in Foods and Beverages. New York: Dekker. [Google Scholar]
  65. Maccarone, E., Campisi, S., Fallio, B., Rapisarda, P. & Sgarla, R. (1998). Flavor Components of Italian Orange Juices. J Food Chem. 46, 2293–2298. [Google Scholar]
  66. Mattheis J.P. & Fellman, J.K. (1999). Preharvest Factors influencing flavor of fresh fruit and vegetables. Postharvest Biol Technol. 15, 227 – 232. [Google Scholar]
  67. Matthews, R.F. & Braddock, R.J. (1987). Recovery and Applications of Essential Oils from Oranges. Food Technol. 41 (1), 57–61. [Google Scholar]
  68. McTavish C. K., Poirier, B.C., Torres, C.A., Mattheis, J.P. & Rudell, D.R. (2020). A convergence of sunlight and cold chain: The influence of sun exposure on postharvest apple peel metabolism, Postharvest Biology and Technology,164, 111164. [Google Scholar]
  69. Melgarejo, P., Calín-Sánchez, Á., Vázquez-Araújo, L., Hernández, F., Martínez, J.J., Legua, P. & Carbonell-Barrachina, Á.A. (2011). Volatile Composition of Pomegranates from 9 Spanish Cultivars Using Headspace Solid Phase Microextraction. Journal of Food Science, 76, S114-S120. https://doi.org/10.1111/j.1750-3841.2010.01945.x [Google Scholar] [Crossref] 
  70. Miller, T.W., Fellman, J.K., Mattheis, J.P. & Mattinson D.S. (1998). Factors that Influence Volatile Ester Biosynthesis in “Delicious” Apples. Acta Hortic 464, 195 – 200. [Google Scholar]
  71. Modise, DM, Wright C.J. & Atherton J.G. (2006). Changes in Strawberry Aroma in Response to Water Stress. Bost. J. Agric. Appl. Sci 2 (1). [Google Scholar]
  72. Musacchi, S. & Serra, S. (2018). Apple Fruit Quality: Overview on Pre-harvest Factors. Scientia Horticulturae. 234, 409–430 [Google Scholar]
  73. Obenland, D.M., Aung, L.H., Bridges, D.I. & Mackey, B.E. (2003). Volatile Emissions of Navel Oranges as Predictors of Freeze Damage. J Agric Food Chem 51, 3367–3371. [Google Scholar]
  74. Ortiz, A., Graell, J. & Lara I. (2011). Volatile Ester-Synthesising Capacity Throughout on-Tree Maturation of “Golden Reinders” Apples. Sci. Hortic. 131, 6–14. [Google Scholar]
  75. Ortiz, A., Graell, J., López, M.L., Echeverría, G. & Lara I. (2010). Volatile ester-synthesising capacity in “Tardibelle” peach fruit in response to controlled atmosphere and 1-MCP treatment. Food Chem. 123, 698–704 [Google Scholar]
  76. Oz, A.T., Baktemur, G., Kargi, S.P. & Kafkas E. (2016). Volatile Compounds of Strawberry Varieties. Chem Nat Compd, 52, 507–509. [Google Scholar]
  77. Öz, A.T., Kafkas, E., Zarifikhosroshahi, M. & Sahin T. (2015). ‘Hicaznar’ Çeşidinde Farklı Uygulamaların Soğukta Depolama Süresince Fitokimyasal ve Uçucu Aroma Bileşimine Etkileri. Türk Tarım–Gıda Bilim ve Teknoloji Dergisi, 3(5), 235-241. [Google Scholar]
  78. Parks, E.P., Kumanyika, S., Moore, R.H., Stettler, N., Wrotniak, B.H. & Kazak, A. (2012). Influence of Stress in Parents on Child Obesity and Related Behaviors. Pediatrics, 130(5), 1096–1104. [Google Scholar]
  79. Paul, V. & Pandey, R. (2014). Role of İnternal Atmosphere on Fruit Ripening and Storability—A Review. J Food Sci Technol 51, 1223–1250. [Google Scholar]
  80. Poll, L., Rindom, A., Toldam–Anderson, T.B. & Hansen, P. (1996). Availability of Assimilates and Formation of Aroma Compounds in Apples as Affected by The Fruit/Leaf Ratio. Physiol Plant 97, 223–227. [Google Scholar]
  81. Pollien, P., Ott, A., Montigon, F., Baumgartner, M., Munoz–Box, R. & Chaintreau, A. (1997). Hyphenated Headspace–Gas Chromatography - Sniffing Technique: Screening of Impact Odorants and Quantitative Aromagram Comparisons. J Agric Food Chem 45, 2630–2637. [Google Scholar]
  82. Rapparini, F. & Predieri, S. (2003). Pear Fruit Volatiles. In Janick J (ed.), Horticultural Reviews. Hoboken, NJ: John Wiley & Sons , pp. 237 – 324. [Google Scholar]
  83. Reineccius, G. (2006). Flavor Chemistry and Technology, 2nd Ed. New York: Taylor & Francis, pp. 73 – 101. [Google Scholar]
  84. Rizzolo, A., Sodi, C. & Poleselllo, A. (1991). Influence of ethylene removal on the volatile development in Passa crassana pears stored in a controlled atmosphere. Food Chem 42, 275 – 285. [Google Scholar]
  85. Romero I., Garcia-Gonzalez, D.L., Aparicio-Ruiz, R. & Morales, M.T. (2017). Study of Volatile Compounds of Virgin Olive Oils with ‘Frostbitten Olives’ Sensory Defect. J. Agric. Food Chem. 65 (21), 4314–4320. [Google Scholar]
  86. Rosilllo, L., Salinas, M.R., Garijo, J. & Alonso G.L. (1999). Study of volatiles in grapes by dynamic headspace analysis Application to the differentiation of some Vitis vinifera varieties.J Chromatogr A 847, 155–159. [Google Scholar]
  87. Salas, N.A., Molina-Corral., F.J., Gonzalez-Aguilar, G.A., Otero, A., Sepulveda, D.R. & Olivas, G.I. (2011). Volatile Production by ‘Golden Delicious’ Apples is Affected by Preharvest Application of Aminoethoxyvinylglycine. Scientia Horticulturae, 130 (2), 436–444. [Google Scholar]
  88. Sanchez G., Venegas-Calerón, M., Salas, J.J., Monforte, A., Badanes, M.L. & Granell, A. (2013). An Integrative “Omics” Approach Identifies New Candidate Genes to Impact Aroma Volatiles in Peach Fruit. BMC Genomics 14, 343. [Google Scholar]
  89. Sanz, C., Perez, A.G., Richardson, D.G. (1994). Simultaneous HPLC determination of 2,5–dimethyl–4–hydroxy–3(2H)–furanone and related flavor compounds in strawberries. J Food Sci 59, 39–41. [Google Scholar]
  90. Seker, M., Gur, E., Ekinci, N. & Gundogdu, M.A. (2013-a). Investigation of Volatile Constituents in Some Promising Local Peach and Nectarine Genotypes Using the HS-SPME Technique by the GC-MS. Acta Hortic. 976, 421–427 [Google Scholar]
  91. Seker, M., Kaçan, A., Gur, E., Ekinci, N. & Gundogdu, M.A. (2013-b). Investigation of Aromatic Compounds of Peach and Nectarine Varieties Grown in Canakkale Ecological Conditions (In Turkish). Tarım Bilimleri Araştırma Dergisi, 6(1), 62–67. [Google Scholar]
  92. Seker, M., Ekinci, N., Gundogdu, M.A. & Gur, E. (2013-c). Investigation of Volatile Compounds of Different Plum Varieties in the Ecological Conditions of Northwestern of Turkey. 48th Croatian and 8th International Symposium on Agriculture, Dubrovnik, Croatia [Google Scholar]
  93. Seker, M., Ekinci, N. & Gur, E. 2017. Effects of different rootstocks on aroma volatile constituents in the fruits of peach (Prunus persica L. Batsch cv. ‘Cresthaven’), New Zealand Journal of Crop and Horticultural Science, 45(1), 1-13. [Google Scholar]
  94. Seker, M., Gur, E., Ekinci N. & Gundogdu, M.A. (2018-a). Volatile Constituents of Different Apricot Varieties in Cool Subtropical Climate Conditions, International Journal of Innovative Approaches in Science Research, 2(3), 103-111 [Google Scholar]
  95. Seker, M., Gur, E., Ekinci, N. & Ipek, A. (2018-b).  Comparison of Lactones Concentrations during Fruit Growth and Development in Some Peach and Nectarine Varieties. II. International Eurasian Agriculture and Natural Sciences Congress (pp.133-139). Baku, Azerbaijan. [Google Scholar]
  96. Selli, S. (2004). Kalecik Karası, Bornova Misketi ve Narince Üzümlerinin Aroma Maddeleri ve Bu Üzümlerden Elde Edilen Şarapların Aroma Maddeleri Üzerine Kabuk Maserasyonu ve Glikozidaz Enziminin Etkileri. Ph. D. Thesis. Cukurova University, Türkiye. 186 s. [Google Scholar]
  97. Shafiq, M., Singh, Z., Khan, A.S. (2013). Time of Methyl Jasmonate Application Influences the Development of ‘Cripps Pink’ Apple Fruit Colour. J Sci Food Agric, 2013(93), 611–618. [Google Scholar]
  98. Shaw, P.E. (1991). Fruits II . In Maarse H (ed.), Volatile Compounds in Foods and Beverages. New York: Dekker, pp. 305–328. [Google Scholar]
  99. Singh, R.K., Srivastava, S. & Sane, V.A. (2013). Biology and Biotechnology of Fruit Flavor and Aroma Volatiles. Stewart Postharvest Review 9(4),105–118. [Google Scholar]
  100. Slegers, A., Angers P., Ouellet, E., Truchon, T. & Pedneault K. (2015). Volatile Compounds from Grape Skin, Juice and Wine From Five Interspecific Hybrid Grape Cultivars Grown in Québec (Canada) For Wine Production. Molecules. 20(6), 10980–11016. [Google Scholar]
  101. Takeoka, G., Flath, R., Mon, T., Teranishi, R. & Guentert, M. (1990). Volatile Constituents of Apricot (Prunus armeniaca L.). J. Agric. Food Chem. 38, 471-477. [Google Scholar]
  102. Toker, C., Aksoy, U. & Ertaş, H. (2015). The Effect of Fruit Ripening, Altitude and Harvest Year on Volatile Compounds of Virgin Olive Oil Obtained from The Ayvalik Variety. Flavour and Fragrance Journal 31(3), 195-205. [Google Scholar]
  103. Van Hooijdonk B.M., Dorji, K. & Behboudian, M.H. (2007). Fruit Quality of “Pacific Rose”TM Apple Grown Under Partial Rootzone Drying and Deficit Irrigation, J Food Agric Environ 5 (3-4), 173–178. [Google Scholar]
  104. Wang, Y., Yang, C., Li, S., Yang, K., Wang, Y., Zhao, J. & Jiang, Q. (2009). Volatile characteristics of 50 peaches and nectarines evaluated by HP–SPME with GC–MS. Food Chem. 116, 356–364. [Google Scholar]
  105. Yahia, E.M. (1994). Apple Flavor. Hortic Rev 16, 255–382. [Google Scholar]
  106. Yan, J., Ban, Z., Lu, H., Li, D., Poverenov, E., Luo, Z. & Li, L. (2018). The Aroma Volatile Repertoire in Strawberry Fruit: A Review, J Sci Food Agric., 98, 4395–4402. [Google Scholar]
  107. Yilmaztekin M., Cabaroglu, T. & Erten, H. (2013). Effects of Fermentation Temperature and Aeration on Production of Natural Isoamyl Acetate by Williopsis saturnus var. Saturnus, BioMed Res. Int., 1, 1-6. [Google Scholar]
  108. Yorulmaz, A., Erinc, H. & Tekin, A. 2013. Changes in Olive and Olive Oil Characteristics during Maturation. J. Am. Oil Chem. Soc., 90, 647–658. [Google Scholar]