International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article | International Journal of Innovative Approaches in Science Research 2021, Vol. 5(2) 29-44

Genetic Diversity of Some Quercus (Fagaceae) and their Putative Hybrids in Turkey

Emel Uslu, Gözde Kibar & Mehmet Tekin Babaç

pp. 29 - 44   |  DOI: https://doi.org/10.29329/ijiasr.2021.357.1

Published online: July 02, 2021  |   Number of Views: 15  |  Number of Download: 41


Abstract

In the study, Inter-Simple Sequence Repeat (ISSR) method was used to identify and differentiate between twelve different white oaks to show their genetic diversity. On the other hand, interspecific hybridization is quite common among oak species. This situation makes the hybridization between closely related parents possible. Besides genetic diversity of some white oaks, the five putative hybrids which are morphologically indistinguishable were also studied. ISSR markers produced a total of 89.71 % polymorphism with Quercus taxa and a total of 175 bands were revealed by 11 ISSR primers. Statistical analysis software’s, Minitab, NTSYS-pc (Numerical Taxonomy and Multivariate Analysis System) and POPGENE (Population Genetic Analysis) software’s were used to reveal variations between these white oaks. Effective allelic frequency, Shannon index, genetic distance was calculated by the POPGENE software. The most distance taxon was Q. pontica, then Q. vulcanica found to be genetically distant among the taxa. The results of the two analyses, cluster (CA) and principal component (PCA) are in correlation with each other and giving four groups among the studied oak taxa. Putative hybrids are usually located between their presumed parents in the dendrogram and graphs. Consequently, this preliminary study showed that ISSR markers can be used with confidence for genetic diversity of white oaks. It can also be helpful for putative hybrids to some extent.

Keywords: hybridization, ISSR, PCA, polymorphism, white oaks


How to Cite this Article?

APA 6th edition
Uslu, E., Kibar, G. & Babac, M.T. (2021). Genetic Diversity of Some Quercus (Fagaceae) and their Putative Hybrids in Turkey . International Journal of Innovative Approaches in Science Research, 5(2), 29-44. doi: 10.29329/ijiasr.2021.357.1

Harvard
Uslu, E., Kibar, G. and Babac, M. (2021). Genetic Diversity of Some Quercus (Fagaceae) and their Putative Hybrids in Turkey . International Journal of Innovative Approaches in Science Research, 5(2), pp. 29-44.

Chicago 16th edition
Uslu, Emel, Gozde Kibar and Mehmet Tekin Babac (2021). "Genetic Diversity of Some Quercus (Fagaceae) and their Putative Hybrids in Turkey ". International Journal of Innovative Approaches in Science Research 5 (2):29-44. doi:10.29329/ijiasr.2021.357.1.

References
  1. Amine, E.A., R. Jbir, P. Melgarejo, F. Hernández, A. Haddioui, & Salhi Hannachi. A. (2014). Efficiency of Inter Simple Sequence Repeat (ISSR) markers for the assessment of genetic diversity of Moroccan pomegranate (Punica granatum L.) cultivars.  Biochem. Syst. Ecol. 56, 24–31. https://doi.org/10.1016/j.bse.2014.04.006 [Google Scholar] [Crossref] 
  2. Aldrich, P.R., J.C. Laubitz, G.R. Parker, O.E. Hodes, & Michler, C.H. (2005). Genetic Structure Inside a Declining Red Oak Community in Old-Growth Forest.  J. Hered. 96, 627–634. https://doi.org/10.1093/jhered/esi115 [Google Scholar] [Crossref] 
  3. Antonecchia, G., P. Fortini, O. Lepais, S. Gerber, P. Léger, G.S. Scippa, & Viscosi, V.  (2015). Genetic structure of a natural oak community in central Italy: Evidence of  gene flow between three sympatric white oak species (Fagaceae).  Ann. For. Res.  58(2), 205–216. https://doi.org/10.15287/afr.2015.415 [Google Scholar] [Crossref] 
  4. Bellarosa, R., M.C. Simeone, A. Papini, & Schirone, B. (2005). Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus sp. Mol. Phylogenet. Evol. 34,  355–370. https://doi.org/10.1016/j.ympev.2004.10.014 [Google Scholar] [Crossref] 
  5. Borelli, S. & Varela, M.C. (2000, October 12-14). EUFORGEN Mediterranean Oaks Network. Report of the First meeting. [Conference presentation] Antalya, Turkey, pp 1–27. [Google Scholar]
  6. Bornet, B., & Branchard, M. (2001). Nonanchored ISSR Markers: Reproducible and Specific Tools for Genome Fingerprinting. Plant Mol. Biol. Report. 19, 209–215. https://doi.org/10.1007/BF02772892 [Google Scholar] [Crossref] 
  7. Borazan, A., & Babaç, M.T. (2003). Morphometric leaf variation in oaks (Quercus) of Bolu, Turkey. Ann. Bot. Fenn. 40, 233–242.  https://www.jstor.org/stable/23726840 [Google Scholar]
  8. Camus, A. (1934-1954). Les chenes: [Monographie] du genre Quercus (et Lithocarpus).   Encyclopedie Economique de Sylviculture, 1314. Academie des Sciences, Paris. [Google Scholar]
  9. Carvalho, A., M. Matos, J. Lima-Brito, H. Guedes-Pinto, & Benito, C. (2005). DNA fingerprintof F1 interspecific hybrids from the Triticeae tribe using ISSRs. Euphytica 143, 93–99. https://doi.org/10.1007/s10681-005-2839-x [Google Scholar] [Crossref] 
  10. Carvalho, A., A. Paula, H. Guedes‐Pinto, L. Martins, J, Carvalho, & Lima‐Brito, J. (2009). Preliminary genetic approach based on both cytogenetic and molecular characterizations of nine oak species.  Plant Biosyst. 143, 25–33. https://doi.org/10.1007/s12041-011-0066-x [Google Scholar] [Crossref] 
  11. Chokchaichamnankit, P., W. Chulalaksananukul, C. Phengklai, & Anamthawat-Jónsson, K. (2008). Species and genetic diversity of Fagaceae in Northern Thailand based on ISSR markers.  J. Trop. For. Sci. 20(1), 8–18. https://doi.org/10.1080/11263500903192126 [Google Scholar] [Crossref] 
  12. Coutinho, J.P., A. Carvalho, & Lima-Brito, J. (2014). Genetic diversity assessment and estimation of phylogenetic relationships among 26 Fagaceae species using ISSRs. Biochem. Syst. Ecol. 54, 247–256. https://doi.org/10.1007/s11033-018-4146-3 [Google Scholar] [Crossref] 
  13. Curtu, A.L., O. Gailing, & Finkeldey, R. (2007a). Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evol.  Biol. 7, 218. https://doi.org/10.1186/1471-2148-7-218 [Google Scholar] [Crossref] 
  14. Curtu, A.L., O. Gailing, L. Leinemann, & Finkeldey, R. (2007b). Genetic variation and  differentiation within a natural community of five oak species.  Plant Biol. 9, 116–126. https://doi.org/10.1055/s-2006-924542 [Google Scholar] [Crossref] 
  15. Çolak, A., & Rotherham, I. (2006). A review of the forest vegetation of Turkey: its Status Past and Present and its Future Conservation.  P Roy Irish Acad B. 106, 343–354. https://doi.org/10.3318/BIOE.2006.106.3.343 [Google Scholar] [Crossref] 
  16. Ding, J., C.J. Ruan, Y. Guan, J.Y. Shan, H. Li & Bao1, Y.H. (2016). Characterization and identification of ISSR markers associated with oil content in sea buckthorn berries. Genet. Mol. Res.15(3), 1-10. https://doi:10.4238/gmr.15038278 [Google Scholar] [Crossref] 
  17. Doyle, J.J., & Doyle, J.L. (1990). Isolation of plant DNA from fresh tissue.  Focus. 12,13–15.  https://doi:10.4236/ajps.2017.86079 [Google Scholar] [Crossref] 
  18. Enescu, C.M., A.L. Curtu, & Şofletea, N. (2013). Is Quercus virgiliana distinct morphological and genetic entity among European white oaks?  Turk. J. Agric. For. 37, 632–641. https://doi:10.3906/tar-1210-28 [Google Scholar] [Crossref] 
  19. Finkeldey. R., & Mátyás, G. (2003). Genetic variation of oaks in Switzerland. Lack of impact of postglacial recolonization history on nuclear gene loci. Theor. Appl. Genet. 106, 346–352. https://doi.org/10.1007/s00122-002-1002-5 [Google Scholar] [Crossref] 
  20. Fortini, P., V. Viscosi, L. Maiuro, S. Fineschi, & Vendramın, G.G. (2009). Comparative leaf Surface morphology and molecular data of five oaks of the subgenus Quercus Oerst (Fagaceae). Plant Biosyst. 143, 543–554.  https://doi.org/10.1080/11263500902722980 [Google Scholar] [Crossref] 
  21. Gamar, Y.A., E.M. Bashir, W. Kimani, I.A. Alaraidh, H.O. Shaikhaldein, M. Kyallo, I. Nzuki, & Skilton, R. (2018). Analysis of genetic difference within and between of wild relatives of Sorghum in Sudan, using SSRs.  Pak. J. Bot. 50(6), 2231-2236. https://doi.org/10.30848/PJB2019-1(17) [Google Scholar] [Crossref] 
  22. Govaerts, R., & Frodin, D.G. (1998). World checklist and bibliography of Fagales.  Royal Botanic Gardens. Kew, Great Britain. [Google Scholar]
  23. Guliyev, N., S. Sharifova, J. Ojaghi, M.Abbasov, & Akparov, Z. (2018). Genetic diversity among melon (Cucumis melo L.) accessions revealed by morphological traits and ISSR markers. Turk. J. Agric. For. 42, 393-401. https://doi.org/10.3906/tar-1707-18 [Google Scholar] [Crossref] 
  24. Hedge, I.C., & Yaltırık, F. (1982). Quercus L. In Davis, P.H. (Ed) Flora of Turkey and the East Aegean Islands.  Edinburgh University Press, Edinburgh 7, pp. 659–683. [Google Scholar]
  25. James, J.K., & Abbott, R.J. (2005). Recent, allopatric, homoploid hybrid speciation: the  origin of Senecio squalidus (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution. 59, 2533–2547. https://doi.org/10.1111/j.0014-3820.2005.tb00967.x [Google Scholar] [Crossref] 
  26. Ishida, T.A., K. Hattori, H. Sato, & Kimura, M.T. (2003). Differentiation and Hybridization between Q. crispula and Q. dentata (Fagaceae): insights from morphological traits, amplified fragment length polymorphism markers, and leaf miner composition.  Am. J. Bot. 90, 769–776. https://doi.org/10.3732/ajb.90.5.769 [Google Scholar] [Crossref] 
  27. Kasaplıgil, B. (1992). Türkiye’nin Geçmişteki ve Bugünkü Meşe Türleri. Orman Bakanlığı Orman Genel Müdürlüğü Yayını, Ankara, pp. 11–64 (In Turkish). [Google Scholar]
  28. Kotschy, T. (1858-1862). Die Eichen Europas und des Orients. Wien-Olmütz. [Google Scholar]
  29. Kremer, A., & Petit, R. (1993). Gene diversity in natural populations of oak species. Ann. For. Sci. 50, 186–202.  https://doi.org/10.1051/forest:19930717 [Google Scholar] [Crossref] 
  30. Kremer, A., J.L. Dupouey, J.D. Deans, J. Cottrell, U. Csaikl, R. Finkeldey, S. Espinel, J. Jensen, J. Kleinschmit, B.V. Dam, A. Ducousso, I. Forrest, H.U. Lopez, A.J. Lowe, M. Tutkova, R.C. Munro, S. Steinhoff, & Badea, V. (2002). Leaf morphological differentiation between Q. robur and Q. petraea is stable across western European mixed oak stands.  Ann. For. Sci. 59, 777–787. https://doi.org/10.1051/forest:2002065 [Google Scholar] [Crossref] 
  31. Manos, P. S., J.J. Doyle, & Nixon, K.C. (1999). Phylogeny, biogeography, and processes of Molecular differentiation in subgenus Quercus. Mol. Phylogenet. Evol. 12, 333–349. https://doi.org/10.1006/mpev.1999.0614 [Google Scholar] [Crossref] 
  32. Maqsood, R.H., M.W. Amjid, M.A. Saleem, G. Shabbir & Khaliq, I. (2017). Identification of genomic regions conferring drought tolerance in bread wheat using ISSR markers. Pak. J. Bot. 49(5), 1821–1827. [Google Scholar]
  33. Menitsky, Y.L. (1984). Oaks of Asia. Leningosed Sciences, St. Petersburg. Analysis of Gene Diversity in Subdivided Populations [Google Scholar]
  34. Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press, New York, pp. 187–192. [Google Scholar]
  35. Nixon, K.C. (2008). An overview of Quercus: classification and phylogenetics with comments on differences in wood anatomy.  In: Billings, R.F., Appel, D.N. (Eds) The proceedings of the 2nd national oak wilt symposium.  International Society of Arboriculture Texas Chapter. pp. 13–25. [Google Scholar]
  36. Oğraş, T.T., E.K. Baştanlar, Ö. K. Metin, İ. Kandemir, & Özçelik, H. (2017). Assessment of  genetic diversity of rose genotypes using ISSR markers.  Turk. J. Bot. 41, 347-355 https://doi.org/10.3906/bot-1608-32 [Google Scholar] [Crossref] 
  37. Ortego, J., & Bonal, R. (2010). Natural hybridization between kermes (Q. coccifera L.) and holm oaks (Q. ilex L.) revealed by microsatellite markers.  Plant Biol. 12, 234–238. https://doi.org/10.1111/j.1438-8677.2009.00244.x [Google Scholar] [Crossref] 
  38. Rahmat Z., S. Ahmad, Z. U. Zia, & Rahman, M.U. (2019). Genetic monitoring of introgressed alleles from Gossypium arboreum L. into G. hirsutum L. using SSR  markers: a potential approach for bringing new alleles under cultivation.  Pak. J.  Bot. 51(2), 479-486. https://doi.org/10.30848/PJB2019-2(25) [Google Scholar] [Crossref] 
  39. Schwarz, O. (1937). Entwurf zu einem natürlichen system der cupuliferen und der Gattung Quercus Notizblatt des Botanischen Gartens und Museums zu Berlin.  Dahlem 8, 1–22. [Google Scholar]
  40. Uslu, E., Y. Bakış, & Babaç, M.T. (2011). A study on biogreographical distribution of  Turkish Oak species and their relations with the Anat. Diagonal. Acta Bot. Hung. 53, 423–440. https://doi.org/10.1556/ABot.53.2011.3-4.21 [Google Scholar] [Crossref] 
  41. Whittemore, A.T., & Schaal, B.A. (1991). Interspecific gene flow in sympatric oaks.  P. Natl. Acad. Sci. Biol. 88, 2540–2544. https://doi.org/10.1073/pnas.88.6.2540 [Google Scholar] [Crossref] 
  42. Xie, Y., J. Li & Zhang, D. (2018). Assessment of genetic diversity and population Structure of endangered Camellia chekiangoleosa Hu using ISSR markers. Pak. J. Bot., 50(5), 1965-1970. http://dx.doi.org/10.30848/PJB2019-4(33) [Google Scholar]
  43. Yaltırık, F. (1984). Türkiye Meşeleri Teşhis Klavuzu.  Yenilik Basımevi, İstanbul, (In Turkish). [Google Scholar]
  44. Zielioski, J., A. Petrova, & Tomaszewski, D. (2006). Quercus trojana subsp. Yaltirikii (Fagaceae), a new subspecies from southern Turkey. Willdenowia. 36, 845–849. https://doi.org/10.3372/wi.36.36214 [Google Scholar] [Crossref] 
  45. Zohary, M. (1966). On the oak species of the Middle East.  Bull. Res. Counc. Isr. 9, 167–186. [Google Scholar]