International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Review article    |    Open Access
International Journal of Innovative Approaches in Science Research 2020, Vol. 4(4) 130-140

The Role of Thermostable Xylanase Enzymes in Bread Making

Büşra Baran & Seyhun Yurdugül

pp. 130 - 140   |  DOI: https://doi.org/10.29329/ijiasr.2020.312.4

Published online: December 22, 2020  |   Number of Views: 181  |  Number of Download: 510


Abstract

Bread, which is an intensively consumed food product should be optimized to minimize the bread staling and therefore waste. Xylanases, a group of enzymes are able to get rid of bread staling and it can be widely isolated from a group of fungi, bacteria or yeast. This review focuses on the main characteristics, producers and the recent textural assistance of xylanases in bakery industry.

Keywords: Xylanase, Bread, Enzyme, Dough stability.


How to Cite this Article

APA 6th edition
Baran, B. & Yurdugul, S. (2020). The Role of Thermostable Xylanase Enzymes in Bread Making . International Journal of Innovative Approaches in Science Research, 4(4), 130-140. doi: 10.29329/ijiasr.2020.312.4

Harvard
Baran, B. and Yurdugul, S. (2020). The Role of Thermostable Xylanase Enzymes in Bread Making . International Journal of Innovative Approaches in Science Research, 4(4), pp. 130-140.

Chicago 16th edition
Baran, Busra and Seyhun Yurdugul (2020). "The Role of Thermostable Xylanase Enzymes in Bread Making ". International Journal of Innovative Approaches in Science Research 4 (4):130-140. doi:10.29329/ijiasr.2020.312.4.

References
  1. Autio, K. (2006). Effects of cell wall components on the functionality of wheat gluten. Biotechnology Advances, 24, 633-635. [Google Scholar]
  2. Bai, YG ; Wang, JS; Zhang, ZF ; Yang, PL; Shi, PJ ; Luo, HY; Meng, K; Huang, HQ  ; Yao, B (2010). A new xylanase from thermoacidophilic Alicyclobacillus sp A4 with broad-range pH activity and pH stability. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 37, 187-194. [Google Scholar]
  3. Basotra, N; Joshi, S ; Satyanarayana, T; Pati, PK; Tsang, A; Chadha, BS. (2018) Expression of catalytically efficient xylanases from thermophilic fungus Malbranchea cinnamomea for synergistically enhancing hydrolysis of lignocellulosics, INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 108, 185-192 [Google Scholar]
  4. Benedetti, M; Vecchi, V; Betterle, N; Natali, A  ; Bassi, R; Dall'Osto, L (2019) Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass, JOURNAL OF BIOTECHNOLOGY, 296, 42-52. [Google Scholar]
  5. Buksa, K. (2020). Effect of pentoses, hexoses, and hydrolyzed arabinoxylan on the most abundant sugar, organic acid and alcohol contents during rye sourdough bread production. Cereal Chemistry, 97, 642-652. [Google Scholar]
  6. Courtin, CM; Delcour, JA 2002.  Arabinoxylans and endoxylanases in wheat flour bread making, JOURNAL OF CEREAL SCIENCE, 35, 225-243. [Google Scholar]
  7. Çetiner, B. , Tomoskozi, S., Torok, K., Salantur, A., Koksel, H. (2020). Comparison of the arabinoxylan composition and physical properties of old and modern bread wheat(Triticum aestivum L.) and landraces gentoypes. Cereal Chemistry, 97, 505-514. [Google Scholar]
  8. Gruppen, H; Kormelink,  F.J.M. ; Voragen A.G.J.(1993) Enzymatic degradation of water-unextractable cell wall material and arabinoxylans from wheat flour, Journal of Cereal Science, 18, 129-143. [Google Scholar]
  9. Harris, A. D. and Ramalingam, C. 2010. Xylanases and its Application in Food Industry: A Review. Journal of Experimental Sciences Vol. 1, Issue 7, Pages 01-11. [Google Scholar]
  10. Hamid, A, Aftab, MN.(2019) Cloning, Purification, and Characterization of Recombinant Thermostable beta-Xylanase Tnap_0700 from Thermotoga naphthophila. APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 189,1274-1290. [Google Scholar]
  11. Katina, K., Salmenkallio-Marttila, M., Partanen, R., Forssell, P., Autio, K., 2006. Effects of sourdough and enzymes on staling of high-fibre wheat bread. Swiss Society of Food Science and Technology 39: 479-491. [Google Scholar]
  12. Kim, H.J. and Yoo, S.H. (2020). Effects of Combined alpha Amylase and Endo-Xylanase Treatments  on the properties of fresh and frozen doughs and final breads. Polymers, 12, No:1349. [Google Scholar]
  13. Kumar, D.,Kumar,S.S., Kumar,J. Kumar,O.;  Mishra,S.V. Kumar,R.,  Malyan, S.K. (2017). Xylanases and their industrial applications: A review. Biochemical and Cellular Archives. Vol. 17, No. 1, pp. 353-360. [Google Scholar]
  14. Labat, E.; Rouau, X. and Morel, M. (2002) Effect of flour water-extractable pentosans on molecular associations in gluten during mixing. Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology, 35 (2002), pp. 185-189 [Google Scholar]
  15. Leys, S. De Bondt, Y., Bosmans, G and Courtin, C.M. (2020). Assesing the impact of xylanase activity on the water distribution: A H-1 NMR study, FOOD CHEMISTRY, 325, No: 126828. [Google Scholar]
  16. Leys, S; De Bondt, Y; Schreurs, L; Courtin, CM (2019). Sensitivity of the Bacillus subtilis Xyn A Xylanase and Its Mutants to Different Xylanase Inhibitors Determines Their Activity Profile and Functionality during Bread Making, JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 67, 11198-11209 [Google Scholar]
  17. Li, XL ; Zhang ZQ; Dean, J.F.D.; Eriksson, K.,  Ljungdahl, L.G. (1993) Purification and Characterization of A New Xylanase (Apx-II) from the fungus Aureobasidium-pullulans y-2311-1, Applied and Environmental Microbiology, 59, 3212-3218. [Google Scholar]
  18. Li, XL;  Ljungdahl, LG. (1996) Expression of Aureobasidium pullulans xynA in, and secretion of the xylanase from, Saccharomyces cerevisiae. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 62, 209-213. [Google Scholar]
  19. Li, J. Kang, J.; Wang, L.; Li, Z.; Wang, R.; Chen, Z.X.(2012) Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI) Journal of Agricultural and Food Chemistry, 60, 6507-6514. [Google Scholar]
  20. Liu, L.Y., Sun, Y.L., Yue, Y., Yang, J.Q., Chen, L.Y., Ashraf, J., Wang, L.L., Zhou, S.M., Tong, L.T. (2020). Composition and foam properties of whole wheat dough liquor as affected by xylanase and glucose oxidase. Food Hydrocolloids, 108, no:106050. [Google Scholar]
  21. Liu, L; Xu, MY; Cao, YL; Wang, H; Shao, J; Xu, MQ; Zhang, YC; Wang, YH; Zhang, WX; Meng, XF ; Liu, WF.  (2020) Biochemical Characterization of Xylanases from Streptomyces sp. B6 and Their Application in the Xylooligosaccharide Production from Viscose Fiber Production Waste, JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 68, 3184-3194. [Google Scholar]
  22. Martins, M.E.D.; Martins, E.D.; Martins, H.L. (2020) Production and Characterization of a Thermostable B-Glucosidase from Myceliophthora heterothallica, BIOSCIENCE JOURNAL, 36, 212-222. [Google Scholar]
  23. Miao, YZ; Kong, YQ; Li, P; Li, GQ; Liu, DY ; Shen, QR ; Zhang, RF (2018) Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5 AMB EXPRESS, 8,44. [Google Scholar]
  24. Niderhaus, C; Garrido, M; Insani, M; Campos, E, Wirth, S. (2018) Heterologous production and characterization of a thermostable GH10 family endo-xylanase from Pycnoporus sanguineus BAFC 2126, PROCESS BIOCHEMISTRY, 67, 92-98. [Google Scholar]
  25. Passarinho, ATP; Ventorim, RZ; Maitan-Alfenas, GP; de Oliveira, EB  ; Guimaraes, VM (2019). Engineered GH11 xylanases from Orpinomyces sp. PC-2 improve techno-functional properties of bread dough, JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 99, 741-747 [Google Scholar]
  26. Pontonio, E., Dingeo, C., DiCagno, R., Blandino, M., Gobbetti, M., Rizzello, C.G. (2020) Brans from hull-less barley, emmer and pigmented wheat varieties: From by-products to bread nutritional improvers using selected lactic acid bacteria and xylanase. International Journal of Food Microbiology, 313, No:108384. [Google Scholar]
  27. Ribeiro LFC, De Lucas RC, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV, Damasio ARL, SquinaFM, Gregory RC,Walton PH, Jorge JA, Prade RA, Buckeridge MS, De Lourdes TM, Polizeli M (2014) A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnol Biofuels 7(1):115. [Google Scholar]
  28. Raveendran S., Parameswaran B, Ummalyma S.B., Abraham A., Mathew A.K., Madhavan A, Rebello S, Pandey A. (2018). Applications of microbial enzymes in food industry. Food Technol Biotechnol., 56, 16-30. [Google Scholar]
  29. Scarton, M., Ganancio, JRC, de Avelar, MHM, Clerici, MTPS, Steel, CJ. (2020). Lime juice and enzymes in clean labelpan bread:baking quality and preservative effect. Journal of Food Science and Technology-Mysore. Doi:10.1007/s13197-020-04693-y. [Google Scholar]
  30. Sharma S., Sharma V., Nargotra, P., Bajaj BK. (2018). Process desired functional attributes of an endoxylanase of GH10 family from a new strain of Aspergillus terreus S9. Int J Biol Macromol 115:663-671. [Google Scholar]
  31. Sharma, S., Sharma V., Nargotra, P., Bajaj, BK. (2020). Bioprocess development for production of a process-apt xylanase with multifaceted application potential for a range of industrial processes. SN Applied Sciences, 2, No:739. [Google Scholar]
  32. Silano, V; Bolognesi, C; Castle, L; Chipman, K; Cravedi, JP; Fowler, P; Franz, R, Grob, K; Gurtler, R; Husoy, T; Karenlampi, S; Mennes, W; Milana, MR; Pfaff, K; Riviere, G; Srinivasan, J; Pocas, MDT; Tlustos, C; Wolfle, D; Zorn, H ; Glandorf, B; Jany, KD; Marcon, F; Penninks, A; Smith, A; Arcella, D; Gomes, A; Kovalkovicova, N; Liu, Y; Maia, J; Engel, KH.(2018). Safety evaluation of food enzyme xylanase from a genetically modified Bacillus subtilis (strain LMG S-27588) EFSA JOURNAL, 16, No:5169. [Google Scholar]
  33. Silano, V; Bolognesi, C; Castle, L; Chipman, K; Cravedi, JP; Fowler, P; Franz, R; Grob, K; Gurtler, R; Husoy, T; Karenlampi, S; Mennes, W; Milana, MR); Pfaff, K; Riviere, G; Srinivasan, J; Pocas, MDT; Tlustos, C; Wolfle, D; Zorn, H; Chesson, A; Glandorf, B; Herman, L; Jany, KD; Marcon, F; Penninks, A; Smith, A; van Loveren, H; Zeljezic, D; Aguilera-Gomez, M; Arcella, D; Kovalkovicova, N; Maia, J ; Liu, Y; Engel, KH. (2018) Safety evaluation of the food enzyme endo-1,4-beta-xylanase from a genetically modified Aspergillus niger (strain XEA) EFSA JOURNAL, 16, No: 5228. [Google Scholar]
  34. Simoes, LCD; da Silva, RR; Nascimento, CED  ; Boscolo, M; Gomes, E; da Silva, R.(2019) Purification and Physicochemical Characterization of a Novel Thermostable Xylanase Secreted by the Fungus Myceliophthora heterothallica F.2.1.4 APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 188, 991-1008 [Google Scholar]
  35. Su, D. M. (2005). Studies on classification and quality evaluation of staple Chinese steamed bread. PhD thesis, Chinese Agricultural University, Beijing, China. (In Chinese, English abstract). [Google Scholar]
  36. Tebben, L., Shen, Y., Li, Y. (2018) Improvers and functional ingredients in whole wheat bread: A review of their effects on dough properties and bread quality, TRENDS IN FOOD SCIENCE & TECHNOLOGY, 81, 10-24. [Google Scholar]
  37. Tozatti, P; Hopkins, EJ; Briggs, C; Hucl, P; Nickerson, MT. (2019). Effect of chemical oxidizers and enzymatic treatments on the rheology of dough prepared from five different wheat cultivars, Journal of Cereal Science, 90, No: 102806. [Google Scholar]
  38. Xue, YM,  Cui, XB, Zhang, ZH, Zhou, T, Gao, R., Li, YX, Ding, XX. (2020). Effect of beta endoxylanase and alpha-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food Chemistry, 302, No: 125332. [Google Scholar]
  39. Yang, J.;Ma, T.;Fang S.G.;Han, Z.(2020). Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites, ENZYME AND MICROBIAL TECHNOLOGY, 139, 109579. [Google Scholar]
  40. Yegin, S; Altinel, B; Tuluk, K. (2018). A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: Effects on dough rheology and bread quality FOOD HYDROCOLLOIDS, 81, 389-397. [Google Scholar]
  41. Zhang H., Zhang, X., Cao, X.R. Iftikhar, M., Wang, J.(2018) Semi-solid state fermentation and enzymatic hydrolysis impeded the destroy of wheat bran on gluten polymerization, LWT-FOOD SCIENCE AND TECHNOLOGY, 98, 306-313. [Google Scholar]
  42. Zhang, L  ; van Boven, A; Mulder, J] ; Grandia, J; Chen, XD; Boom, RM  ; Schutyser, MAI (2019) Arabinoxylans-enriched fractions: From dry fractionation of wheat bran to the investigation on bread baking performance, JOURNAL OF CEREAL SCIENCE, 87, 1-8. [Google Scholar]
  43. Zhang, B.L., Yang, W.D., Feng, W., Omedi, J.O. , Liu, R.S., Huang, J.X. Zhang, L. , Zou, Q.B., Huang, W.N., Li, SL. (2019). Use of Kluvyeromyces marxianus prefermented wheat bran as a source of enzyme mixture to improve dough performance and bread biochemical properties CEREAL CHEMISTRY, 96, 142-153.   [Google Scholar]