International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Review article    |    Open Access
International Journal of Innovative Approaches in Science Research 2019, Vol. 3(4) 117-127

Principles and Applications of Recombinant Protein Production in Plants

Hatice Duman, Pınar Ulupınar, Gaye Pisiren, Zeynep Rumeysa Kaymaz & Sercan Karav

pp. 117 - 127   |  DOI: https://doi.org/10.29329/ijiasr.2019.219.3

Published online: December 30, 2019  |   Number of Views: 253  |  Number of Download: 897


Abstract

Recombinant protein production has become a growing sector all around the world such as in therapeutic applications, pharmaceutical, agriculture etc. Although, a number of systems for protein expression have been developed and there is an increasing requirement for efficient methods of large-scale production. Therefore recombinant proteins are produced by various ways to generate large quantities for commercial and research applications in a different host such as in bacteria, yeasts, insects, and mammalian culture. Among these, plant systems are mostly preferred since they have a developed eukaryotic system. The expression of recombinant proteins in plants and plant cells has been promoted as an alternative cost-effective production platform.

In this review we described, challenges and advantages of plants as expression systems for proteins and discussed unique advantages of producing proteins recombinantly in different plants; tobacco, rice, and maize.

Keywords: Recombinant protein, protein expression, plants, tobacco, rice and maize


How to Cite this Article

APA 6th edition
Duman, H., Ulupinar, P., Pisiren, G., Kaymaz, Z.R. & Karav, S. (2019). Principles and Applications of Recombinant Protein Production in Plants . International Journal of Innovative Approaches in Science Research, 3(4), 117-127. doi: 10.29329/ijiasr.2019.219.3

Harvard
Duman, H., Ulupinar, P., Pisiren, G., Kaymaz, Z. and Karav, S. (2019). Principles and Applications of Recombinant Protein Production in Plants . International Journal of Innovative Approaches in Science Research, 3(4), pp. 117-127.

Chicago 16th edition
Duman, Hatice, Pinar Ulupinar, Gaye Pisiren, Zeynep Rumeysa Kaymaz and Sercan Karav (2019). "Principles and Applications of Recombinant Protein Production in Plants ". International Journal of Innovative Approaches in Science Research 3 (4):117-127. doi:10.29329/ijiasr.2019.219.3.

References
  1. Bosch, D., Castilho, A., Loos, A., Schots, A., Steinkellner, H. 2013. "N -Glycosylation of Plant-produced Recombinant Proteins", 5503–5512. [Google Scholar]
  2. Chebolu, S., Daniell, H. 2010. "Chloroplast-derived vaccine antigens and biopharmaceuticals: Expression, folding, assembly and functionality". Current Topics in Microbiology and Immunology. [Google Scholar]
  3. Chen, Q., Lai, H. 2015. "Gene delivery into plant cells for recombinant protein production". BioMed Research International, 2015. [Google Scholar]
  4. Cho, J. S., Hong, S. M., Joo, S. Y., Yoo, J. S., Kim, D. Il. 2007. "Cryopreservation of transgenic rice suspension cells producing recombinant hCTLA4Ig". Applied Microbiology and Biotechnology. [Google Scholar]
  5. Christensen, A. H., Sharrock, R. A., Quail, P. H. 1992. "Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation". Plant Molecular Biology. [Google Scholar]
  6. Desai, P. N., Shrivastava, N., Padh, H. 2010. "Production of heterologous proteins in plants: Strategies for optimal expression". Biotechnology Advances. [Google Scholar]
  7. Dove, A. 2002. "Uncorking the biomanufacturing bottleneck". Nature Biotechnology. [Google Scholar]
  8. Franklin, S. E., Mayfield, S. P. 2004. "Prospects for molecular farming in the green alga Chlamydomonas reinhardtii". Current Opinion in Plant Biology. [Google Scholar]
  9. Gustafsson, C., Govindarajan, S., Minshull, J. 2004. "Codon bias and heterologous protein expression". Trends in Biotechnology. [Google Scholar]
  10. He, Y., Ning, T., Xie, T., Qiu, Q., Zhang, L., Sun, Y., … Yang, D. 2011. "Large-scale production of functional human serum albumin from transgenic rice seeds". Proceedings of the National Academy of Sciences of the United States of America. [Google Scholar]
  11. Hood, E. E., Witcher, D. R., Maddock, S., Meyer, T., Baszczynski, C., Bailey, M., … Howard, J. A. 1997. "Commercial production of avidin from transgenic maizecharacterization of transformant, production, processing, extraction and purification". Molecular Breeding. [Google Scholar]
  12. Huang, J., Wu, L., Yalda, D., Adkins, Y., Kelleher, S. L., Crane, M., … Huang, N. 2002. "Expression of functional recombinant human lysozyme in transgenic rice cell culture". Transgenic Research. [Google Scholar]
  13. Ikonomou, L., Schneider, Y. J., Agathos, S. N. 2003. "Insect cell culture for industrial production of recombinant proteins". Applied Microbiology and Biotechnology. [Google Scholar]
  14. James, C. M. 2007. "Pichia Protocols, Second Edition". Pichia Protocols, Second Edition. [Google Scholar]
  15. Kawaka, F., Ngetich, A. 2017. "Plants as Expression Systems for Recombinant Proteins". Asian Journal of Biology, 3(3), 1–8. [Google Scholar]
  16. Lau, O. S., Sun, S. S. M. 2009. "Plant seeds as bioreactors for recombinant protein production". Biotechnology Advances. [Google Scholar]
  17. Malabadi, R. B., Meti, N. T., Mulgund, G. S., Nataraja, K., Vijaya Kumar, S. 2012. "Recent advances in plant derived vaccine antigens against human infectious diseases". Research in Pharmacy, 2(2), 8–19. Retrieved from www.researchinpharmacy.com [Google Scholar]
  18. Pérez Filgueira, D. M., Zamorano, P. I., Domínguez, M. G., Taboga, O., Del Médico Zajac, M. P., Puntel, M., … Sadir, A. M. 2003. "Bovine herpes virus gD protein produced in plants using a recombinant tobacco mosaic virus (TMV) vector possesses authentic antigenicity". Vaccine. [Google Scholar]
  19. Potvin, G., Zhang, Z. 2010. "Strategies for high-level recombinant protein expression in transgenic microalgae: A review". Biotechnology Advances. [Google Scholar]
  20. Punt, P. J., Van Biezen, N., Conesa, A., Albers, A., Mangnus, J., Van Den Hondel, C. 2002. "Filamentous fungi as cell factories for heterologous protein production". Trends in Biotechnology. [Google Scholar]
  21. Ramessar, K., Sabalza, M., Capell, T., Christou, P. 2008. "Maize plants: An ideal production platform for effective and safe molecular pharming". Plant Science. [Google Scholar]
  22. Rasala, B. A., Muto, M., Lee, P. A., Jager, M., Cardoso, R. M. F., Behnke, C. A., … Mayfield, S. P. 2010. "Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii". Plant Biotechnology Journal, 8(6), 719–733. [Google Scholar]
  23. Reuter, L. J., Bailey, M. J., Joensuu, J. J., Ritala, A. 2014. "Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells". Plant Biotechnology Journal. [Google Scholar]
  24. Ruggiero, F., Exposito, J. Y., Bournat, P., Gruber, V., Perret, S., Comte, J., … Theisen, M. 2000. "Triple helix assembly and processing of human collagen produced in transgenic tobacco plants". FEBS Letters. [Google Scholar]
  25. Schillberg, S., Raven, N., Spiegel, H., Rasche, S., Buntru, M. 2019. "Critical analysis of the commercial potential of plants for the production of recombinant proteins". Frontiers in Plant Science, 10(June). [Google Scholar]
  26. Schmidt, F. R. 2004. "Recombinant expression systems in the pharmaceutical industry". Applied Microbiology and Biotechnology. [Google Scholar]
  27. Specht, E., Miyake-Stoner, S., Mayfield, S. 2010. "Micro-algae come of age as a platform for recombinant protein production". Biotechnology Letters. [Google Scholar]
  28. Takaiwa, F., Takagi, H., Hirose, S., Wakasa, Y. 2007. "Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice". Plant Biotechnology Journal. [Google Scholar]
  29. Tian, L., Sun, S. S. M. 2011. "A Cost-Effective ELP-Intein coupling system for recombinant protein purification from plant production platform". PLoS ONE. [Google Scholar]
  30. Torrent, M., Llop-Tous, I., Ludevid, M. D. 2009. "Protein body induction: A new tool to produce and recover recombinant proteins in plants". Methods in Molecular Biology. [Google Scholar]
  31. Walsh, G. 2018. "Biopharmaceutical benchmarks 2018". Nature Biotechnology, 36(12), 1136–1145. [Google Scholar]
  32. Wildt, S., Gerngross, T. U. 2005. "The humanization of N-glycosylation pathways in yeast". Nature Reviews Microbiology. [Google Scholar]
  33. Wurm, F. M. 2004. "Production of recombinant protein therapeutics in cultivated mammalian cells". Nature Biotechnology. [Google Scholar]
  34. Zhang, H., Wang, W., Quan, C., Fan, S. 2010. "Engineering Considerations for Process Development in Mammalian Cell Cultivation". Current Pharmaceutical Biotechnology. [Google Scholar]
  35. Zhong, G. Y., Peterson, D., Delaney, D. E., Bailey, M., Witcher, D. R., Register, J. C., Howard, J. A. 1999. "Commercial production of aprotinin in transgenic maize seeds". Molecular Breeding. [Google Scholar]