Research article | Open Access
International Journal of Innovative Approaches in Science Research 2025, Vol. 9(3) 59-74
pp. 59 - 74 | DOI: https://doi.org/10.29329/ijiasr.2025.1362.1
Publish Date: September 30, 2025 | Single/Total View: 0/0 | Single/Total Download: 0/0
Abstract
This study explores the dynamics of magnetic microparticles in a magnet-integrated microfluidic chip, examining the effects of magnet distance and flow rate on particle motion. The integrated system enables compact, on-chip magnetophoresis for separating biologically important molecules and microorganisms. Experiments used Neodymium (NdFeB) magnets positioned at 10, 11, and 12 mm from the channel and flow rates of 0.5, 0.7, and 1 μl/min. At 10 mm, the magnetic field strongly influenced particle motion, causing accumulation near the channel walls, especially at lower flow rates. As the distance increased, drag forces dominated, reducing magnetic control. The highest particle accumulation (14.94%) occurred at 10 mm with a 0.5 μl/min flow rate, while the highest percentage of particles exiting the upper outlet (60.18%) was observed at 11 mm with 0.7 μl/min. These findings provide insights into the interplay between magnetic fields, hydrodynamic forces, and particle dynamics in microfluidic environments. They have potential applications in targeted drug delivery, diagnostics, and lab-on-a-chip technologies, where precise particle control is crucial for optimizing performance.
Keywords: Iron Oxide Microparticles, Microfluidic Systems, Polydimethylsiloxane (PDMS), Magnetic Forces
How to Cite this Article? |
---|
APA 7th edition Harvard Chicago 16th edition |
References |
---|
[1] A. G. Arani, M. S. Zarei, Nonlocal vibration of Y-shaped CNT conveying nano-magnetic viscous fluid under magnetic field, Ain Shams Engineering Journal, 6(2), 565–575, 2015. https://doi.org/10.1016/j.asej.2014.11.012 [2] V. Garbin, J. C. Crocker, K. J. Stebe, Nanoparticles at fluid interfaces: Exploiting capping ligands to control adsorption, stability, and dynamics, Journal of Colloid and Interface Science, 387(1), 1–11, 2012. https://doi.org/10.1016/j.jcis.2012.06.052 [3] S. Oveissi, D. S. Toghraie, S. A. Eftekhari, Analysis of transverse vibrational response and instabilities of axially moving CNT conveying fluid, International Journal of Fluid Mechanics Research, 44(2), 123–135, 2017. [4] L. Zeng, X. Chen, J. Du, Z. Yu, R. Zhang, Y. Zhang, H. Yang, Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device, Nanoscale, 13(7), 4029–4037, 2021. https://doi.org/10.1039/D0NR08383F [5] C. F. Driscoll, R. M. Morris, A. E. Senyei, K. J. Widder, G. S. Heller, Magnetic targeting of microspheres in blood flow, Microvascular Research, 27(3), 353–369, 1984. https://doi.org/10.1016/0026-2862(84)90065-7 [6] Y. L. Liu, D. Chen, P. Shang, D. C. Yin, A review of magnet systems for targeted drug delivery, Journal of Controlled Release, 302, 90–104, 2019. https://doi.org/10.1016/j.jconrel.2019.03.031 [7] M. Eshaghi, M. Nazari, M. M. Shahmardan, M. Ramezani, V. Mashayekhi, Particle separation in a microchannel by applying magnetic fields and Nickel Sputtering, Journal of Magnetism and Magnetic Materials, 514, 167121, 2020. https://doi.org/10.1016/j.jmmm.2020.167121 [8] Q. Cao, X. Han, L. Li, Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms, Lab on a Chip, 14(15), 2762–2777, 2014. https://doi.org/10.1039/C4LC00367E [9] S. Varela, A. Rivas, A. Vernet, J. Pallarès, Experimental study of the deposition of magnetic particles on the walls of microchannels, Micromachines, 12(6), 712, 2021. https://doi.org/10.3390/mi12060712 [10] A. Surpi, T. Shelyakova, M. Murgia, J. Rivas, Y. Piñeiro, P. Greco, M. Fini, V. A. Dediu, Versatile magnetic configuration for the control and manipulation of superparamagnetic nanoparticles, Scientific Reports, 13(1), 5301, 2023. https://doi.org/10.1038/s41598-023-32299-9 [11] R. Abedini-Nassab, M. Pouryosef Miandoab, M. Şaşmaz, Microfluidic synthesis, control, and sensing of magnetic nanoparticles: A review, Micromachines, 12(7), 768, 2021. https://doi.org/10.3390/mi12070768 [12] N. Rezvani Jalal, P. Mehrbod, S. Shojaei, H. I. Labouta, P. Mokarram, A. Afkhami, T. Madrakian, M. Los, D. Schaafsma, M. Giersig, M. Ahmadi, S. Ghavami, Magnetic nanomaterials in microfluidic sensors for virus detection: A review, ACS Applied Nano Materials, 4(5), 4307–4328, 2021. https://doi.org/10.1021/acsanm.1c01077 [13] Ennen, A. Hütten, Magnetic nanoparticles meet microfluidics, Materials Today: Proceedings, 4(Suppl. 2), S160–S167, 2017. https://doi.org/10.1016/j.matpr.2017.09.181 [14] Z. Zhong, J. He, G. Li, L. Xia, Recent advances in magnetic nanoparticles-assisted microfluidic bioanalysis, Chemosensors, 11(3), 173, 2023. https://doi.org/10.3390/chemosensors11030173 [15] F. D. Güzel, B. Miles, Development of in-flow label-free single molecule sensors using planar solid-state nanopore integrated microfluidic devices, Micro & Nano Letters, 13(9), 1352–1357, 2018. https://doi.org/10.1049/mnl.2018.5206 [16] R. Didarian, A. Ebrahimi, H. Ghorbanpoor, H. Bagheroghli, F. D. Güzel, M. Farhadpour, N. Lotfibakhshayesh, H. Hashempour, H. Avci, On-chip microfluidic separation of cyclotides, Turkish Journal of Chemistry, 47(1), 253–262, 2023. https://doi.org/10.55730/1300-0527.3534 [17] H. Ghorbanpoor, A. Norouz Dizaji, I. Akcakoca, E. O. Blair, Y. Öztürk, P. J. Hoskisson, T. Kocagöz, H. Avcı, D. K. Corrigan, F. D. Güzel, A fully integrated rapid on-chip antibiotic susceptibility test – A case study for Mycobacterium smegmatis, Sensors and Actuators A: Physical, 339, 113515, 2022. https://doi.org/10.1016/j.sna.2022.113515 [18] J. Kaur, H. Ghorbanpoor, Y. Öztürk, Ö. Kaygusuz, H. Avcı, C. Darcan, L. Trabzon, F. D. Güzel, On-chip label-free impedance-based detection of antibiotic permeation, IET Nanobiotechnology, 15(1), 100–106, 2021. https://doi.org/10.1049/nbt2.12019 [19] A. Ebrahimi, H. Ghorbanpoor, H. Bagheroghli, N. Lotfibakhshayesh, H. Hashempour, H. Avcı, F. D. Güzel, High-throughput microfluidic chip with silica gel–C18 channels for cyclotide separation, Analytical and Bioanalytical Chemistry, 415(27), 6873–6883, 2023. https://doi.org/10.1007/s00216-023-04966-3 |