- Aydogdu, A., Sumnu, G., & Sahin, S. (2018). A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate Polymers, 181, 234–246. https://doi.org/10.1016/j.carbpol.2017.10.071 [Google Scholar] [Crossref]
- Aydoğdu Emir, A., Gürsel, D., Yörüksoy, İ., & Yildiz, E. (2024). Functional nanofibers for active packaging: Elenolic acid-loaded chitosan/PEO blends. Journal of Applied Polymer Science, e56619. https://doi.org/10.1002/app.56619 [Google Scholar] [Crossref]
- Bourbon, A. I., Pinheiro, A. C., Pereira, R. N., Cerqueira, M. A., & Vicente, A. A. (2011). Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 106(2), 111–118. https://doi.org/10.1016/j.jfoodeng.2011.03.024 [Google Scholar] [Crossref]
- Bumbudsanpharoke, W., Harnkarnsujarit, N., & Singh, P. (Eds.). (2022). Nanotechnology-Enhanced Food Packaging. Wiley-VCH. ISBN: 978-3-527-34773-5 [Google Scholar]
- Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23(7), 1895–1902. https://doi.org/10.1016/j.foodhyd.2009.02.007 [Google Scholar] [Crossref]
- Emir, A. A., Yildiz, E., Aydogdu, Y., & et al. (2023). Active films based on faba bean (Vicia faba L.) flour incorporated with sumac (Rhus coriaria): Assessment of antioxidant and antimicrobial performances of packaging for shelf life of chicken breast. Food and Bioprocess Technology, 16, 327–341. https://doi.org/10.1007/s11947-022-02940-y [Google Scholar] [Crossref]
- Fabra, M. J., Talens, P., & Chiralt, A. (2016). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 61, 180–188. https://doi.org/10.1016/j.foodhyd.2008.04.015 [Google Scholar] [Crossref]
- Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 19(7), e1700782. https://doi.org/10.1126/sciadv.1700782 [Google Scholar] [Crossref]
- Kadam, A. A., Singh, S., & Gaikwad, K. K. (2021). Chitosan-based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control, 124, 107877. https://doi.org/10.1016/j.foodcont.2021.107877 [Google Scholar] [Crossref]
- Kurek, M., Elez, I., Tran, M., Šč, M., Dragović, V., & Galić, K. (2018). Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocolloids, 84, 238–246. https://doi.org/10.1016/j.foodhyd.2018.05.050 [Google Scholar] [Crossref]
- Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), 3057–3064. https://doi.org/10.1016/j.foodres.2011.07.030 [Google Scholar] [Crossref]
- Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 4132. https://doi.org/10.3390/molecules24224132 [Google Scholar] [Crossref]
- Peng, Y., Wu, Y., & Li, Y. (2013). Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, 59, 282–289. https://doi.org/10.1016/j.ijbiomac.2013.04.019 [Google Scholar] [Crossref]
- Rambabu, K., Bharath, G., Banat, F., Loke, P., & Hernández, H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126, 1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196 [Google Scholar] [Crossref]
- Serra, A. T., Matias, A. A., Nunes, A. V., Leitão, M. C., Brito, D., Bronze, R., & Duarte, C. M. (2008). In vitro evaluation of olive- and grape-based natural extracts as potential preservatives for food. Innovative Food Science & Emerging Technologies, 9(3), 311–319. https://doi.org/10.1016/j.ifset.2007.07.011 [Google Scholar] [Crossref]
- Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology, 25(12), 634–643. https://doi.org/10.1016/j.tifs.2008.07.003 [Google Scholar] [Crossref]
- Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003 [Google Scholar] [Crossref]
- Sudjana, A. N., et al. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International Journal of Antimicrobial Agents, 33(5), 461–463. https://doi.org/10.1016/j.ijantimicag.2008.10.026 [Google Scholar] [Crossref]
- Wang, H., Hao, L., Wang, P., Chen, M., Jiang, S., & Jiang, S. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids, 63, 437–446. [Google Scholar]
|