International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2024, Vol. 8(4) 148-158

Chitosan Nanofibers Enriched with Oleuropein via Electrospinning: Potential as Active Packaging Materials

İlayda Yörüksoy, Kadir Yılmaz, Ayca Aydogdu Emir & Savaş Gürdal

pp. 148 - 158   |  DOI: https://doi.org/10.29329/ijiasr.2024.1102.2

Published online: December 30, 2024  |   Number of Views: 23  |  Number of Download: 19


Abstract

The development of sustainable and functional food packaging materials is crucial to addressing global challenges such as environmental pollution, food waste, and the demand for eco-friendly solutions. This study explores the fabrication of oleuropein-incorporated chitosan nanofibers using the electrospinning technique. Oleuropein, a phenolic compound known for its potent antioxidant and antimicrobial properties, was integrated into chitosan-based nanofibers to enhance their functional characteristics. The structural, antioxidant, and antimicrobial properties of the nanofiber films were thoroughly evaluated. Results revealed that increasing oleuropein concentration significantly influenced the viscosity of the polymer solutions and nanofiber morphology while having negligible effects on electrical conductivity. The films exhibited enhanced total phenolic content (TPC) and antioxidant activity with higher oleuropein concentrations, with the OLE_3.75 sample achieving the highest TPC (31.66±3.29 mg GAE/g film) and strong DPPH scavenging activity (87.15±1.14%). Antimicrobial tests demonstrated selective inhibition of Staphylococcus aureus (Gram-positive bacteria), with inhibition zones of 18.50±0.15 mm and 17.50±0.25 mm for OLE_2.5 and OLE_3.75 films, respectively, while showing no activity against Escherichia coli (Gram-negative bacteria). These findings underscore the potential of oleuropein-loaded PEO/chitosan nanofiber films as innovative active packaging materials with robust antioxidant and selective antimicrobial properties. This research contributes to the advancement of multifunctional, biodegradable packaging solutions that align with sustainability and food safety goals, offering promising applications in food preservation and biomedical fields.

Keywords: Chitosan Nanofibers, Active Packaging, Oleuropein, Electrospinning


How to Cite this Article

APA 6th edition
Yoruksoy, I., Yilmaz, K., Emir, A.A. & Gurdal, S. (2024). Chitosan Nanofibers Enriched with Oleuropein via Electrospinning: Potential as Active Packaging Materials . International Journal of Innovative Approaches in Science Research, 8(4), 148-158. doi: 10.29329/ijiasr.2024.1102.2

Harvard
Yoruksoy, I., Yilmaz, K., Emir, A. and Gurdal, S. (2024). Chitosan Nanofibers Enriched with Oleuropein via Electrospinning: Potential as Active Packaging Materials . International Journal of Innovative Approaches in Science Research, 8(4), pp. 148-158.

Chicago 16th edition
Yoruksoy, Ilayda, Kadir Yilmaz, Ayca Aydogdu Emir and Savas Gurdal (2024). "Chitosan Nanofibers Enriched with Oleuropein via Electrospinning: Potential as Active Packaging Materials ". International Journal of Innovative Approaches in Science Research 8 (4):148-158. doi:10.29329/ijiasr.2024.1102.2.

References
  1. Aydogdu, A., Sumnu, G., & Sahin, S. (2018). A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate Polymers, 181, 234–246. https://doi.org/10.1016/j.carbpol.2017.10.071 [Google Scholar] [Crossref] 
  2. Aydoğdu Emir, A., Gürsel, D., Yörüksoy, İ., & Yildiz, E. (2024). Functional nanofibers for active packaging: Elenolic acid-loaded chitosan/PEO blends. Journal of Applied Polymer Science, e56619. https://doi.org/10.1002/app.56619 [Google Scholar] [Crossref] 
  3. Bourbon, A. I., Pinheiro, A. C., Pereira, R. N., Cerqueira, M. A., & Vicente, A. A. (2011). Physico-chemical characterization of chitosan-based edible films incorporating bioactive compounds of different molecular weight. Journal of Food Engineering, 106(2), 111–118. https://doi.org/10.1016/j.jfoodeng.2011.03.024 [Google Scholar] [Crossref] 
  4. Bumbudsanpharoke, W., Harnkarnsujarit, N., & Singh, P. (Eds.). (2022). Nanotechnology-Enhanced Food Packaging. Wiley-VCH. ISBN: 978-3-527-34773-5 [Google Scholar]
  5. Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., & Vicente, A. A. (2009). Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23(7), 1895–1902. https://doi.org/10.1016/j.foodhyd.2009.02.007 [Google Scholar] [Crossref] 
  6. Emir, A. A., Yildiz, E., Aydogdu, Y., & et al. (2023). Active films based on faba bean (Vicia faba L.) flour incorporated with sumac (Rhus coriaria): Assessment of antioxidant and antimicrobial performances of packaging for shelf life of chicken breast. Food and Bioprocess Technology, 16, 327–341. https://doi.org/10.1007/s11947-022-02940-y [Google Scholar] [Crossref] 
  7. Fabra, M. J., Talens, P., & Chiralt, A. (2016). Microstructure and optical properties of sodium caseinate films containing oleic acid–beeswax mixtures. Food Hydrocolloids, 61, 180–188. https://doi.org/10.1016/j.foodhyd.2008.04.015 [Google Scholar] [Crossref] 
  8. Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 19(7), e1700782. https://doi.org/10.1126/sciadv.1700782 [Google Scholar] [Crossref] 
  9. Kadam, A. A., Singh, S., & Gaikwad, K. K. (2021). Chitosan-based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control, 124, 107877. https://doi.org/10.1016/j.foodcont.2021.107877 [Google Scholar] [Crossref] 
  10. Kurek, M., Elez, I., Tran, M., Šč, M., Dragović, V., & Galić, K. (2018). Development and evaluation of a novel antioxidant and pH indicator film based on chitosan and food waste sources of antioxidants. Food Hydrocolloids, 84, 238–246. https://doi.org/10.1016/j.foodhyd.2018.05.050 [Google Scholar] [Crossref] 
  11. Lv, F., Liang, H., Yuan, Q., & Li, C. (2011). In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Research International, 44(9), 3057–3064. https://doi.org/10.1016/j.foodres.2011.07.030 [Google Scholar] [Crossref] 
  12. Lourenço, S. C., Moldão-Martins, M., & Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 24(22), 4132. https://doi.org/10.3390/molecules24224132 [Google Scholar] [Crossref] 
  13. Peng, Y., Wu, Y., & Li, Y. (2013). Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules, 59, 282–289. https://doi.org/10.1016/j.ijbiomac.2013.04.019 [Google Scholar] [Crossref] 
  14. Rambabu, K., Bharath, G., Banat, F., Loke, P., & Hernández, H. (2019). Mango leaf extract incorporated chitosan antioxidant film for active food packaging. International Journal of Biological Macromolecules, 126, 1234–1243. https://doi.org/10.1016/j.ijbiomac.2018.12.196 [Google Scholar] [Crossref] 
  15. Serra, A. T., Matias, A. A., Nunes, A. V., Leitão, M. C., Brito, D., Bronze, R., & Duarte, C. M. (2008). In vitro evaluation of olive- and grape-based natural extracts as potential preservatives for food. Innovative Food Science & Emerging Technologies, 9(3), 311–319. https://doi.org/10.1016/j.ifset.2007.07.011 [Google Scholar] [Crossref] 
  16. Siracusa, V., Rocculi, P., Romani, S., & Dalla Rosa, M. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology, 25(12), 634–643. https://doi.org/10.1016/j.tifs.2008.07.003 [Google Scholar] [Crossref] 
  17. Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770–775. https://doi.org/10.1016/j.foodhyd.2010.04.003 [Google Scholar] [Crossref] 
  18. Sudjana, A. N., et al. (2009). Antimicrobial activity of commercial Olea europaea (olive) leaf extract. International Journal of Antimicrobial Agents, 33(5), 461–463. https://doi.org/10.1016/j.ijantimicag.2008.10.026 [Google Scholar] [Crossref] 
  19. Wang, H., Hao, L., Wang, P., Chen, M., Jiang, S., & Jiang, S. (2017). Release kinetics and antibacterial activity of curcumin loaded zein fibers. Food Hydrocolloids, 63, 437–446. [Google Scholar]