International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2024, Vol. 8(2) 38-55

Investigation of the Biological Activities of Colocasia esculenta L. Schott

İrem Dağlar, İrem Akyol & Neslihan Demir

pp. 38 - 55   |  DOI: https://doi.org/10.29329/ijiasr.2024.1054.1

Published online: June 30, 2024  |   Number of Views: 47  |  Number of Download: 65


Abstract

Throughout history, medicinal plants have been utilized, laying the foundation for contemporary medicine. Plant-derived compounds have been a vital source for developing medications. Colocasia esculenta stands out among traditional crops for its significant nutritional and medicinal potential, surpassing many other tuber crops. In this study, the antioxidant, mutagenicity, and antimutagenicity of four different extracts (hexane, acetone, methanol, and aqueous) of C. esculenta were investigated. Antioxidant activities of C. esculenta extracts were detected with the determination of total phenolic/flavonoid content (TPC/TFC), total antioxidant activity (TAC), and DPPH free radical scavenging activity. Acetone extract of C. esculenta exhibited the highest values in all TPC, TFC, TAC, and the DPPH free radical scavenging analyses. The mutagenic and antimutagenic activities of those four extracts were examined with TA98 and TA100 strains of Salmonella typhimurium. In higher concentrations, acetone and methanol extracts showed stronger mutagenic activity than the other extracts in both strains. The highest antimutagenic activity was observed in hexane and acetone in strain TA98.

Keywords: Colocasia esculenta, Antioxidant Activity, Mutagenic, Antimutagenic


How to Cite this Article

APA 6th edition
Daglar, I., Akyol, I. & Demir, N. (2024). Investigation of the Biological Activities of Colocasia esculenta L. Schott . International Journal of Innovative Approaches in Science Research, 8(2), 38-55. doi: 10.29329/ijiasr.2024.1054.1

Harvard
Daglar, I., Akyol, I. and Demir, N. (2024). Investigation of the Biological Activities of Colocasia esculenta L. Schott . International Journal of Innovative Approaches in Science Research, 8(2), pp. 38-55.

Chicago 16th edition
Daglar, Irem, Irem Akyol and Neslihan Demir (2024). "Investigation of the Biological Activities of Colocasia esculenta L. Schott ". International Journal of Innovative Approaches in Science Research 8 (2):38-55. doi:10.29329/ijiasr.2024.1054.1.

References
  1. Akshatha, M. D., Kavadikeri, S., & Rao, N. N. (2018). In vitro micropropagation and antioxidant assay in Colocasia esculenta. Plant Tissue Cult. Biotechnol, 28, 183-190. https://doi.org/10.3329/ptcb.v28i2.39677 [Google Scholar] [Crossref] 
  2. Akyüz, M. (2019). Determination of Antioxidant Activity of Ethanol Extract of Gölevez [(Colocasia esculenta (L.)] Tubers. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22, 388-394. [Google Scholar]
  3. Angami, T., Jha, A. K., Buragohain, J., Deka, B. C., Verma, V. K., & Nath, A. (2015). Evaluation of taro (Colocasia esculenta L.) cultivars for growth, yield, and quality attributes. Journal of Horticultural Sciences, 183-189. [Google Scholar]
  4. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181 (4617), 1199-1200. https://doi.org/10.1038/1811199a0 [Google Scholar] [Crossref] 
  5. Botting, K. J., Young, M. M., Pearson, A. E., Harris, P. J., & Ferguson, L. R. (1999). Antimutagens in food plants eaten by Polynesians: micronutrients, phytochemicals and protection against bacterial mutagenicity of the heterocyclic amine 2-amino-3-methylimidazo [4, 5-f] quinoline. Food and Chemical Toxicology, 37(2-3), 95-103. [Google Scholar]
  6. Brown, A. C., Reitzenstein, J. E., Liu, J., & Jadus, M. R. (2005). The anti‐cancer effects of poi (Colocasia esculenta) on colonic adenocarcinoma cells in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(9), 767-771. https://doi.org/10.1002/ptr.1712 [Google Scholar] [Crossref] 
  7. Chakraborty, P., Deb, P., Chakraborty, S., Chatterjee, B., & Abraham, J. (2015). Cytotoxicity and antimicrobial activity of Colocasia esculenta. Journal of Chemical and Pharmaceutical Research, 7(12), 627-635. https://doi.org/10.5555/20163058035 [Google Scholar] [Crossref] 
  8. Chivenge, P., Mabhaudhi, T., Modi, A. T., & Mafongoya, P. (2015). The potential role of neglected and underutilized crop species as future crops under water-scarce conditions in Sub-Saharan Africa. International Journal of Environmental Research and Public Health, 12(6), 5685-5711. https://doi.org/10.3390/ijerph120605685 [Google Scholar] [Crossref] 
  9. Council of Scientific & Industrial Research (India). (1972). The Wealth of India: A Dictionary of Indian Raw Materials and Industrial Products (Vol. 9). [Google Scholar]
  10. Das, S., Kandali, R., & Baishya, S. (2023). Development and Nutritional Analysis of Taro Powder [Colocasia esculenta (L.) Schott.] Enriched with Natural Colorants. International Journal of Environment and Climate Change, 13(9), 2883-2895. https://doi.org/10.9734/IJECC/2023/v13i92523 [Google Scholar] [Crossref] 
  11. Ehiobu, J. M., & Ogu, G. I. (2018). Phytochemical content and in vitro anti-mycelial efficacy of Colocasia esculenta L, Manihot esculenta Crantz and Dioscorea rotundata Poir leaf extracts on Aspergillus niger and Botryodiplodia theobromae. Journal of Horticulture and Plant Research, 1, 9-18. https://doi.org/10.18052/www.scipress.com/JHPR.1.1 [Google Scholar] [Crossref] 
  12. Elmosallamy, A., Eltawil, N., Ibrahim, S., & Hussein, S. A. A. (2021). Phenolic Profile: Antimicrobial Activity and Antioxidant Capacity of Colocasia esculenta (L.) Schott. Egyptian Journal of Chemistry, 64(4), 2165-2172. 10.21608/ejchem.2021.56495.3213 [Google Scholar]
  13. Kapcum, C., Pasada, K., Kantiwong, P., Sroysang, B., Phiwtawee, J., Suphantharika, M., ... & Wongsagonsup, R. (2022). Effects of different cooking methods on chemical compositions, in vitro starch digestibility, and antioxidant activity of taro (Colocasia esculenta) corms. International Journal of Food Science & Technology, 57(8), 5144-5154. https://doi.org/10.1111/ijfs.15823 [Google Scholar] [Crossref] 
  14. Karigidi, K. O., Adetuyi, F. O., Akintimehin, E. S., Dada, I. O., & Olugotun, A. F. (2019). Effect of cooking methods on polyphenol, antioxidant, and inhibition of key enzymes linked to carbohydrate metabolism of cocoyam (Colocasia esculenta L. Schott). Annals. Food Science and Technology, 20(3), 543-552. [Google Scholar]
  15. Kasote, D. M., Bhalerao, B. M., Jagtap, S. D., Khyade, M. S., & Deshmukh, K. K. (2011) Antioxidant and alpha-amylase inhibitory activity of methanol extract of Colocasia esculenta corm. Pharmacologyonline 2: 715-721. [Google Scholar]
  16. Keshav, A., Sharma, A., & Mazumdar, B. (2019). Phytochemical analysis and antioxidant activity of Colocasia esculenta (L.) leaves. International Journal of Chemical and Molecular Engineering, 13(1), 20-23. doi.org/10.5281/zenodo.3607765 [Google Scholar]
  17. Kim, Y. S., Adeyemi, D., Korovulavula, P., Jang, D. W., & Park, M. K. (2019). Effect of steaming on the functional compounds and antioxidant activity of Fijian taro (Colocasia esculenta L. Schott) corms. Korean Journal of Food Preservation, 26(4), 449-454. https://doi.org/10.11002/kjfp.2019.26.4.449 [Google Scholar] [Crossref] 
  18. Kubde, M. S., Khadabadi, S. S., Farooqui, I. A., & Deore, S. L. (2010). In-vitro anthelmintic activity of Colocasia esculenta. Der Pharmacia Lettre, 2(2), 82-85. [Google Scholar]
  19. Kumawat, N. S., Chaudhari, S. P., Wani, N. S., Deshmukh, T. A., & Patil, V. R. (2010). Antidiabetic activity of ethanol extract of Colocasia esculenta leaves in alloxan-induced diabetic rats. International Journal of PharmTech Research, 2(2), 1246-9. [Google Scholar]
  20. Kundu, N., Campbell, P., Hampton, B., Lin, C. Y., Ma, X., Ambulos, N., ... & Fulton, A. M. (2012). Antimetastatic activity isolated from Colocasia esculenta (taro). Anti-cancer Drugs, 23(2), 200-211.  https://doi.org/10.1097/CAD.0b013e32834b85e8 [Google Scholar] [Crossref] 
  21. Kundu, N., Ma, X., Hoag, S., Wang, F., Ibrahim, A., Godoy-Ruiz, R., ... & Fulton, A. M. (2021). An extract of taro (Colocasia esculenta) mediates potent inhibitory actions on metastatic and cancer stem cells by tumor cell-autonomous and immune-dependent mechanisms. Breast Cancer: Basic and Clinical Research, 15, 11782234211034937. https://doi.org/10.1177/11782234211034937 [Google Scholar] [Crossref] 
  22. Lee, M. H., Lin, Y. S., Lin, Y. H., Hsu, F. L., & Hou, W. C. (2003). The mucilage of yam (Dioscorea batatas Decne) tuber exhibited angiotensin-converting enzyme inhibitory activities. Botanical Bulletin of Academia Sinica, 44. [Google Scholar]
  23. Li, H. M., Hwang, S. H., Kang, B. G., Hong, J. S., & Lim, S. S. (2014). Inhibitory effects of Colocasia esculenta (L.) Schott constituents on aldose reductase. Molecules, 19(9), 13212-13224. https://doi.org/10.3390/molecules190913212 [Google Scholar] [Crossref] 
  24. Lim, T. K. (2015). Colocasia esculenta. Edible Medicinal and Non-Medicinal Plants: Volume 9, Modified Stems, Roots, Bulbs, 454-492. https://doi.org/10.1007/978-94-017-9511-1 [Google Scholar] [Crossref] 
  25. Liu, Q., Donner, E., Yin, Y., Huang, R. L., & Fan, M. Z. (2006). The physicochemical properties and in vitro digestibility of selected cereals, tubers, and legumes grown in China. Food Chemistry, 99(3), 470-477. https://doi.org/10.1016/j.foodchem.2005.08.008 [Google Scholar] [Crossref] 
  26. Maron, D. M., & Ames, B. N. (1983). Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113(3-4), 173-215. https://doi.org/10.1016/0165-1161(83)90010-9 [Google Scholar] [Crossref] 
  27. Masui, H., Kondo, T., & Kojima, M. (1989). An antifungal compound, 9, 12, 13-trihydroxy-(E)-10-octadecenoic acid, from Colocasia antiquorum, inoculated with Ceratocystis fimbriata. Phytochemistry, 28(10), 2613-2615. https://doi.org/10.1016/S0031-9422(00)98051-8 [Google Scholar] [Crossref] 
  28. Matejić, J. S., Džamić, A. M., Mihajilov-Krstev, T. M., Ranđelović, V. N., Krivošej, Z. Đ., & Marin, P. D. (2013). Total phenolic and flavonoid content, antioxidant and antimicrobial activity of extracts from Tordylium maximum. Journal of Applied Pharmaceutical Science, 3(01), 055-059 10.7324/JAPS.2013.30110 [Google Scholar]
  29. Matthews, P. J., & Ghanem, M. E. (2021). Perception gaps that may explain the status of taro (Colocasia esculenta) as an “orphan crop”. Plants, People, Planet, 3(2), 99-112.  https://doi.org/10.1002/ppp3.10155 [Google Scholar] [Crossref] 
  30. Mitharwal, S., Kumar, A., Chauhan, K., & Taneja, N. K. (2022). Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves A review. Food Chemistry, 383, 132406. https://doi.org/10.1016/j.foodchem.2022.132406 [Google Scholar] [Crossref] 
  31. Mitsuda, H., Yasumoto, K., & Iwami, K. (1966). Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo 19: 210–214. [Google Scholar]
  32. Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1-2), 29-60. https://doi.org/10.1016/S0027-5107(00)00064-6 [Google Scholar] [Crossref] 
  33. Nogodula, J. N., Draug, J. M. D., Jamero, M. S., & Suyom, C. L. E. (2012). Phytochemical and antibacterial action of taro (Colocasia esculenta, Araceaea) aqueous-ethanolic leaf extract against selected bacterial strains. UIC Research Journal, 18(1), 221-236. [Google Scholar]
  34. Nur-Hadirah, K., Arifullah, M., Nazahatul, A. A., Klaiklay, S., Chumkaew, P., Norhazlini, M. Z., & Zulhazman, H. (2021). Total phenolic content and antioxidant activity of an edible Aroid, Colocasia esculenta (L.) Schott. In IOP Conference Series: Earth and Environmental Science, 756(1), 012044. https://doi.org/10.1088/1755-1315/756/1/012044 [Google Scholar] [Crossref] 
  35. Onwueme, I. (1999). Taro cultivation in Asia and the Pacific. RAP publication, 16, 1-9. [Google Scholar]
  36. Patel, A., & Singh, J. (2023). Taro (Colocasia esculenta L): Review on its botany, morphology, ethno-medical uses, phytochemistry, and pharmacological activities. The Pharma Innovation Journal, 12(2), 5-14. https://doi.org/10.22271/tpi.2023.v12.i3a.18908 [Google Scholar] [Crossref] 
  37. Prajapati, R., Kalariya, M., Umbarkar, R., Parmar, S., & Sheth, N. (2011). Colocasia esculenta: A potent indigenous plant. International Journal of Nutrition, Pharmacology, Neurological Diseases, 1(2), 90-96. https://doi.org/10.4103/2231-0738.84188 [Google Scholar] [Crossref] 
  38. Prathibha, S., Nambisan, B., & Leelamma, S. (1995). Enzyme inhibitors in tuber crops and their thermal stability. Plant Foods for Human Nutrition, 48, 247-257. https://doi.org/10.1007/BF01088446 [Google Scholar] [Crossref] 
  39. Rasouli, H., Farzaei, M. H., & Khodarahmi, R. (2017). Polyphenols and their benefits: A review. International Journal of Food Properties, 20(sup2), 1700-1741. https://doi.org/10.1080/10942912.2017.1354017 [Google Scholar] [Crossref] 
  40. Ribeiro Pereira, P., Bertozzi de Aquino Mattos, E., Nitzsche Teixeira Fernandes Correa, A. C., Afonso Vericimo, M., & Margaret Flosi Paschoalin, V. (2020). Anticancer and Immunomodulatory Benefits of Taro (Colocasia esculenta) Corms, an underexploited tuber crop. International Journal of Molecular Sciences, 22(1), 265. https://doi.org/10.3390/ijms22010265 [Google Scholar] [Crossref] 
  41. Sheikh, M. A., & Tembhre, M. (2016). Preliminary phytochemical screening, in vitro antioxidant activity, total phenolic and total flavonoid contents of Colocasia esculenta leaf extract. Asian Journal of Experimental Sciences, 30, 39-43. [Google Scholar]
  42. Sheikh, M. A., & Tembhre, M. (2018). Liver Toxicity and its Amelioration by Natural Antioxidants-A Review. Asian Journal of Experimental Sciences, 32(1), 35-43. [Google Scholar]
  43. Sheth, A., Mitaliya, K. D., & Joshi, S. (2005). The herbs of Ayurveda. Ahmedabad: AK Sheth Publishers, 356. [Google Scholar]
  44. Singh, S., Singh, D. R., Salim, K. M., Srivastava, A., Singh, L. B., & Srivastava, R. C. (2011). Estimation of proximate composition, micronutrients and phytochemical compounds in traditional vegetables from Andaman and Nicobar Islands. International Journal of Food Sciences and Nutrition, 62(7), 765-773. https://doi.org/10.3109/09637486.2011.585961 [Google Scholar] [Crossref] 
  45. Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49-55. https://doi.org/10.5344/ajev.1977.28.1.49 [Google Scholar] [Crossref] 
  46. Sudhakar, P., Thenmozhi, V., Srivignesh, S., & Dhanalakshmi, M. (2020). Colocasia esculenta (L.) Schott: Pharmacognostic and pharmacological review. Journal of Pharmacognosy and Phytochemistry, 9(4), 1382-1386.  10.22271/phyto.2020.v9.i4s.11937 [Google Scholar]
  47. Thepouyporn, A., Kwanbunjan, K., Pooudong, S., & Changbumrung, S. (2006). Mutagenicity study of weeds and common plants used in traditional medicine and for animal feed. Southeast Asian Journal of Tropical Medicine and Public Health, 37, 195. [Google Scholar]
  48. Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093 [Google Scholar] [Crossref] 
  49. Tuti, M. D., Pal, R. S., Arun Kumar, R., Bist, J. K., & Bhatt, J. C. (2015). Colocasia-based cropping systems affects the antioxidant properties and productivity of colocasia [Colocasia esculenta (l.) schott] tuber. The Bioscan an International Quaterly Journal of Life Sciences, 10(1), 117-123. [Google Scholar]