International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2024, Vol. 8(2) 79-89

The Effects of Sowing Density Applications on Yield and Some Quality Parameters in Different Vegetable Microgreens

Tolga Sarıyer, Mehmet Ali Gündoğdu, Murat Şeker & Yavuz Alkan

pp. 79 - 89   |  DOI: https://doi.org/10.29329/ijiasr.2024.1054.4

Published online: June 30, 2024  |   Number of Views: 18  |  Number of Download: 24


Abstract

Microgreens are plants consumed before reaching maturity. Vegetable seeds are generally used in their production. Microgreens are used in salads and various dishes in terms of their aromatic aspects. It is known that microgreens are an important source of antioxidants. Although microgreens are easy and fast to produce, producers’ lack of knowledge limits the production of microgreens. Seed spacing has also been not correctly verified in previous studies, as well. Within the scope of the study, okra (Abelmoschus esculentus L. cv. ‘Sultani’), carrot (Daucus carota L. cv. ‘Nantes’), leek (Allium porrum L. cv. ‘Hotanlı’), spinach (Spinacia oleracea L. cv. ‘Matador’), cress (Lepidium sativum L. cv. ‘Tere’) vegetables were sown at two different sowing densities (the average amount of seeds that can fit on a 1 cm² surface area-dense sowing and 1/3 of this amount-sparse sowing). Plant weight, yield, width of root collar, plant height, water soluble dry matter, ascorbic acid were evaluated. Results indicated that ocra microgreens’weight was higher than the other microgreens’ and had higher values in terms of yield. Ocra microgreens also demonstrated the highest total soluble solids value. The yield of okra, spinach and cress microgreens increased with dense planting. However, it was found that the increase in planting density and the increase in yield were not at the same rate. Cress microgreens had the highest value in terms of ascorbic acid value.

Keywords: Microgreen, Sowing Density, Yield, Ascorbic Acid


How to Cite this Article

APA 6th edition
Sariyer, T., Gundogdu, M.A., Seker, M. & Alkan, Y. (2024). The Effects of Sowing Density Applications on Yield and Some Quality Parameters in Different Vegetable Microgreens . International Journal of Innovative Approaches in Science Research, 8(2), 79-89. doi: 10.29329/ijiasr.2024.1054.4

Harvard
Sariyer, T., Gundogdu, M., Seker, M. and Alkan, Y. (2024). The Effects of Sowing Density Applications on Yield and Some Quality Parameters in Different Vegetable Microgreens . International Journal of Innovative Approaches in Science Research, 8(2), pp. 79-89.

Chicago 16th edition
Sariyer, Tolga, Mehmet Ali Gundogdu, Murat Seker and Yavuz Alkan (2024). "The Effects of Sowing Density Applications on Yield and Some Quality Parameters in Different Vegetable Microgreens ". International Journal of Innovative Approaches in Science Research 8 (2):79-89. doi:10.29329/ijiasr.2024.1054.4.

References
  1. Anonymous (2020a). Online: https://greenhuiz.com/blogs/natural-inspiration/microgreen-sprouting-at-home Access date: 24 May 2024. [Google Scholar]
  2. Anonymous (2020b). https://www.chelseagreen.com/2020/okra-microgreens Access date: 25 May 2024. [Google Scholar]
  3. Anonymous (2020c). https://biologydictionary.net/essential-amino-acids/#non-essential-amino-acids Access date: 25 May 2024. [Google Scholar]
  4. Barzegar, T., Moradi, P., Nikbakht, J., Ghahremani, Z. (2016). Physiological response of Okra cv. Kano to foliar application of putrescine and humic acid under water deficit stress. International Journal of Horticultural Science and Technology, 3(2): 187-197. doi: 10.22059/ijhst.2017.213448.147 [Google Scholar] [Crossref] 
  5. Bhatt, P., Sharma, S. (2018). Microgreens: A Nutrient Rich Crop that can Diversify Food System. Int. J. Pure App. Biosci., 6(2): 182-186. doi: http://dx.doi.org/10.18782/2320-7051.6251 [Google Scholar] [Crossref] 
  6. Choe, U., Yu, L. L., Wang, T. T. Y. (2018). The Science behind Microgreens as an Exciting New Food for the 21st Century. J. Agric. Food Chem., 66: 11519−11530. doi: 10.1021/acs.jafc.8b03096 [Google Scholar] [Crossref] 
  7. Ellis R. H., Roberts E. H. (1980). Towards a Rational Basis for Testing Seed Quality. In: Hebblethwaite, P.D. (Ed.), Seed Production. Butterworths, London (pp. 605-635). [Google Scholar]
  8. Gerovac, J. R., Craver, J. K., Boldt, J. K., Lopez, R. G. (2016). Light Intensity and Quality from Sole-source Light-emitting Diodes Impact Growth, Morphology, and Nutrient Content of Brassica Microgreens. Hortscience, 51(5): 497–503. [Google Scholar]
  9. Gioia, F. D., Hong, J. C., Pisani, C., Petropoulos, S. A., Bai, J., Rosskopf, E. N. (2023). Yield performance, mineral profile, and nitrate content in a selection of seventeen microgreen species. Frontiers in Plant Science, 14:1220691. doi: 10.3389/fpls.2023.1220691 [Google Scholar] [Crossref] 
  10. Li, T., Lalk, G. T., Bi, G. (2021). Fertilization and Pre-Sowing Seed Soaking Affect Yield and Mineral Nutrients of Ten Microgreen Species. Horticulturae, 7(14): 1-16. https://doi.org/10.3390/horticulturae7020014 [Google Scholar] [Crossref] 
  11. Murphy, C., Pill, W. (2010). Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). Journal of Horticultural Science & Biotechnology, 85(3): 171–176. doi: http://dx.doi.org/10.1080/14620316.2010.11512650 [Google Scholar] [Crossref] 
  12. Pearson D., Churchill A. A. (1970). The chemical analyses of foods. Gloucester Place, 104: 233. [Google Scholar]
  13. Thuong, V. T., Minh, H. G. (2020). Effects of growing substrates and seed density on yield and quality of radish (Raphanus sativus) microgreens. Res. on Crops, 21 (3): 579-586. doi: 10.31830/2348-7542.2020.091 [Google Scholar] [Crossref] 
  14. Waterland, N. L., Moon, Y., Tou, J. C., Kim, M. J., Pena-Yewtukhiw, E. M., Park, S. (2017). Mineral Content Differs among Microgreen, Baby Leaf, and Adult Stages in Three Cultivars of Kale. Hortscience, 52(4): 566–571. doi: 10.21273/HORTSCI11499-16 [Google Scholar] [Crossref] 
  15. Wieth, A. R., Pinheiro, W. D., Duarte, T. D. S. (2019). Purple Cabbage Microgreens Grown in Different Substrates and Nutritive Solution Concentrations. Rev. Caatinga, Mossoró, 32(4): 976-985. http://dx.doi.org/10.1590/1983-21252019v32n414rc [Google Scholar]
  16. Wojdylo, A., Nowicka, P., Tkacz, K., Turkiewicz, I. P. (2020). Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties. Molecules, 25(4648): 1-19. doi:10.3390/molecules25204648 [Google Scholar] [Crossref] 
  17. Xiao, Z., Lester, G. E., Luo, Y., Wang, Q. (2012). Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem., 60: 7644−7651. doi: dx.doi.org/10.1021/jf300459b [Google Scholar] [Crossref] 
  18. Younis, M., Akram, N. A., Ashraf, M., El-Sheikh, M. A., Khan, Z. U. (2024). Impact of ascorbic acid-rich phyto-extracts on growth, yield and physio-biochemistry of okra [Abelmoschus esculentus (L.) Moench.] subjected to drought stress. Journal of King Saud University – Science, 36, 103195. doi: https://doi.org/10.1016/j.jksus.2024.103195 [Google Scholar] [Crossref]