International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2024, Vol. 8(2) 90-112

Quantum Digital Signature Generation with Quantum Continuous Variables

Cumali Yaşar & Can Aktaş

pp. 90 - 112   |  DOI: https://doi.org/10.29329/ijiasr.2024.1054.5

Published online: June 30, 2024  |   Number of Views: 28  |  Number of Download: 28


Abstract

Ensuring the security of digital communication and data transfer has become essential in the modern era. Classical cryptographic techniques are increasingly vulnerable due to advances in quantum technologies and algorithms. Consequently, quantum computers and quantum communication offer promising solutions for secure data transfer and encryption. This study explores the generation of Quantum Digital Signatures (QDS) using Quantum Continuous Variables (QCV), providing a novel approach to secure digital signature technologies.

The paper outlines the core principles of QDS generation with QCV, detailing the signature creation and verification processes. It highlights the advantages of this technology in secure communication and data transfer and discusses potential security vulnerabilities and future development prospects. Quantum Continuous Variables (QCVs), typically used in quantum optical systems, represent physical quantities with continuous spectra, such as the wavelength or phase of light. These variables enable efficient and secure quantum information processing and communication.

Despite significant progress in quantum cryptography protocols using QCVs, practical application and optimization of these technologies face numerous challenges. These include complexities in preparing and measuring quantum states, managing quantum errors, and achieving higher efficiency and security standards. Moreover, the practical applications of QCV in industrial contexts remain limited, highlighting the need for further experimental and applied research.

The methodology for generating QDS using QCVs involves employing specific quantum states, such as coherent and squeezed states. The process includes key distribution, signature creation and verification, and addressing potential quantum attacks. The system model comprises a sender (Alice), a receiver (Bob), and an arbiter (Charlie), facilitating secure and authenticated message transmission.

Keywords: Quantum Digital Signature, Continuous Variables, Quantum Cryptography, Coherent States, Squeezed States, Quantum Communication, Secure Data Transfer, Quantum Computing, Phase Shift, Quantum Key Distribution (QKD)


How to Cite this Article

APA 6th edition
Yasar, C. & Aktas, C. (2024). Quantum Digital Signature Generation with Quantum Continuous Variables . International Journal of Innovative Approaches in Science Research, 8(2), 90-112. doi: 10.29329/ijiasr.2024.1054.5

Harvard
Yasar, C. and Aktas, C. (2024). Quantum Digital Signature Generation with Quantum Continuous Variables . International Journal of Innovative Approaches in Science Research, 8(2), pp. 90-112.

Chicago 16th edition
Yasar, Cumali and Can Aktas (2024). "Quantum Digital Signature Generation with Quantum Continuous Variables ". International Journal of Innovative Approaches in Science Research 8 (2):90-112. doi:10.29329/ijiasr.2024.1054.5.

References
  1. Adesso, G., Serafini, A., & Illuminati, F. (2007). Continuous-variable quantum information with three-mode Gaussian states: Allotment,trade-off, teleportation, and telecloning. 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM’07). https://www.semanticscholar.org/paper/Continuous-variable-quantum-information-with-and-Adesso-Serafini/5880b139c1b72a35522ef8d08601327eeef477f1 [Google Scholar]
  2. Aktaş, A., & Yilmaz, İ. (2023). High Dimensional Quantum Digital Signature Depending on Entanglement Swapping. International Journal of Informatics and Software Engineering, 3(3), 1-6. https://dergipark.org.tr/en/download/article-file/3132861 [Google Scholar]
  3. Ben-David, S., & Sattath, O. (2016). Quantum Tokens for Digital Signatures. 52. https://arxiv.org/abs/1609.09047v6 [Google Scholar]
  4. Booth, R. I. (2021). Flow Conditions for Continuous Variable Measurement-Based Quantum Computing. https://doi.org/10.48550/arxiv.2104.00572 [Google Scholar] [Crossref] 
  5. Braunstein, S. L., & van Loock, P. (2004). Quantum information with continuous variables. https://doi.org/10.1103/RevModPhys.77.513 [Google Scholar] [Crossref] 
  6. Braunstein, S. L., & van Loock, P. (2005). Quantum information with continuous variables. Reviews of Modern Physics, 77(2), 513-577. [Google Scholar]
  7. Buck, S., Coleman, R., & Sargsyan, H. (2021a). Continuous Variable Quantum Algorithms: An Introduction (arXiv:2107.02151). arXiv. https://doi.org/10.48550/arXiv.2107.02151 [Google Scholar] [Crossref] 
  8. Buck, S., Coleman, R., & Sargsyan, H. (2021b). Continuous Variable Quantum Algorithms: An Introduction. https://doi.org/10.48550/arXiv.2107.02151 [Google Scholar] [Crossref] 
  9. Clarke, P. J., Collins, R. J., Dunjko, V., Andersson, E., Jeffers, J., & Buller, G. S. (2012). Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nature Communications, 3, 1174. https://doi.org/10.1038/ncomms2172 [Google Scholar] [Crossref] 
  10. Deng, X., Hao, S., Guo, H., Xie, C., & Su, X. (2016). Continuous Variable Quantum Optical Simulation for Time Evolution of Quantum Harmonic Oscillators. Scientific Reports. https://doi.org/10.1038/srep22914 [Google Scholar] [Crossref] 
  11. Diep, D. N., Nagata, K., & Wong, R. (2020). Continuous-Variable Quantum Computing and Its Applications to Cryptography. International Journal of Theoretical Physics. https://doi.org/10.1007/s10773-020-04571-5 [Google Scholar] [Crossref] 
  12. Gottesman, D., & Chuang, I. (2001a). Quantum Digital Signatures. https://arxiv.org/abs/quant-ph/0105032v2 [Google Scholar]
  13. Gottesman, D., & Chuang, I. (2001b). Quantum Digital Signatures. https://arxiv.org/abs/quant-ph/0105032v2 [Google Scholar]
  14. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N. J., & Grangier, P. (2003). Quantum key distribution using gaussian-modulated coherent states. Nature, 421(6920), 238-241. [Google Scholar]
  15. Hirano, T., Ichikawa, T., Matsubara, T., Ono, M., Oguri, Y., Namiki, R., Kasai, K., Matsumoto, R., & Tsurumaru, T. (2017). Implementation of continuous-variable quantum key distribution with discrete modulation. Quantum Science and Technology, 2(2), 024010. https://doi.org/10.1088/2058-9565/aa7230 [Google Scholar] [Crossref] 
  16. Jain, N., Chin, H.-M., Mani, H., Lupo, C., Nikolic, D. S., Kordts, A., Pirandola, S., Pedersen, T. B., Kolb, M., Ömer, B., Pacher, C., Gehring, T., & Andersen, U. L. (2022). Practical continuous-variable quantum key distribution with composable security. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-32161-y [Google Scholar] [Crossref] 
  17. Johansson, J. R., Nation, P. D., & Nori, F. (2012a). QuTiP: An open-source Python framework for the dynamics of open quantum systems. Computer Physics Communications, 183(8), 1760-1772. https://doi.org/10.1016/j.cpc.2012.02.021 [Google Scholar] [Crossref] 
  18. Johansson, J. R., Nation, P. D., & Nori, F. (2012b). QuTiP: An open-source Python framework for the dynamics of open quantum systems. Computer Physics Communications, 183(8), 1760-1772. https://doi.org/10.1016/j.cpc.2012.02.021 [Google Scholar] [Crossref] 
  19. OpenAI. (2020). ChatGPT [Software]. OpenAI. https://openai.com/research/chatgpt [Google Scholar]
  20. Pfister, O. (2019). Continuous-Variable Quantum Computing in the Quantum Optical Frequency Comb. Journal of Physics B Atomic Molecular and Optical Physics. https://doi.org/10.1088/1361-6455/ab526f [Google Scholar] [Crossref] 
  21. Wootters, W. K. (1987). A Wigner-function formulation of finite-state quantum mechanics. Annals of Physics, 176(1), 1-21. https://doi.org/10.1016/0003-4916(87)90176-X [Google Scholar] [Crossref] 
  22. Yan-Yan, F., Rong-Hua, S., & Ying, G. (2018). Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states. Chinese Physics B, 27(2). http://cpb.iphy.ac.cn/article/2018/1924/cpb_27_2_020302.html [Google Scholar]