International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2024, Vol. 8(2) 56-69

Harnessing the Power of Quantum Computing to Build an Ideal Team and Line-Up for the Euroleague Fantasy Challenge

Sabri Gündüz & İhsan Yılmaz

pp. 56 - 69   |  DOI: https://doi.org/10.29329/ijiasr.2024.1054.2

Published online: June 30, 2024  |   Number of Views: 17  |  Number of Download: 41


Abstract

Quantum computing (QC) is a computational science that provides efficient results for solving optimization problems. Quantum annealing (QA) is a form of QC and leverages superposition and quantum tunneling, which are phenomena of quantum mechanics. QA is used to solve real-life problems thanks to its superior properties. Therefore, studying QA with a specific focus on fantasy sports based on realistic scenarios offers a relatively under-explored, but promising approach, which represents the primary motivation of this study. Thus, this study presents a mathematical model for the Euroleague Fantasy Challenge (EFC) by Euroleague based on binary integer programming (BIP) to build the ideal team by selecting 10 players and one head coach among 288 players and 18 head coaches, in such a way that some team-building criteria set by the EFC are met and the PTM (Avg points) is maximized. To achieve it, this study uses the open-source Python library PyQUBO to express this model in the quadratic unconstrained binary optimization (QUBO) form and solves this model in the QUBO form through the D-Wave’s Leap Hybrid (quantum-classical) Solver to identify the ideal basketball team and head coach. Accordingly, a mathematical model based on BIP is presented to find the team formation with the highest PTM (Avg points) value, considering various potential team formations for the chosen team. It then converts this model into the QUBO form in the PyQUBO library and solves it on both the D-Wave’s Advantage 4.1 and Hybrid Solver. Both solvers suggest the same line-up (1 guard, 3 forwards, 1 center) as the ideal line-up. This study will hopefully contribute to the relevant field by encouraging further studies to leverage QC to guide complex decision-making processes in all team sports.

Keywords: Quantum Annealing, Fantasy Basketball, Euroleague Fantasy Challenge, Quantum Optimization, QUBO, Pyqubo, D-Wave’s


How to Cite this Article

APA 6th edition
Gunduz, S. & Yilmaz, I. (2024). Harnessing the Power of Quantum Computing to Build an Ideal Team and Line-Up for the Euroleague Fantasy Challenge . International Journal of Innovative Approaches in Science Research, 8(2), 56-69. doi: 10.29329/ijiasr.2024.1054.2

Harvard
Gunduz, S. and Yilmaz, I. (2024). Harnessing the Power of Quantum Computing to Build an Ideal Team and Line-Up for the Euroleague Fantasy Challenge . International Journal of Innovative Approaches in Science Research, 8(2), pp. 56-69.

Chicago 16th edition
Gunduz, Sabri and Ihsan Yilmaz (2024). "Harnessing the Power of Quantum Computing to Build an Ideal Team and Line-Up for the Euroleague Fantasy Challenge ". International Journal of Innovative Approaches in Science Research 8 (2):56-69. doi:10.29329/ijiasr.2024.1054.2.

References
  1. Apolloni, B., Carvalho, C., & De Falco, D. (1989). Quantum stochastic optimization. Stochastic Processes and their Applications, 33(2), 233-244. [Google Scholar]
  2. Ayanzadeh, R., Halem, M., & Finin, T. (2020). Reinforcement quantum annealing: A quantum-assisted learning automata approach. arXiv: 2001.00234 [quant-ph]. [Google Scholar]
  3. Combining machine learning and optimization modeling in fantasy basketball. (2023). Retrieved December 2023, from https://www.gurobi.com/jupyter_models/combining-machine-learning-and-optimization-modeling-in-fantasy-basketball/ [Google Scholar]
  4. Das, N. R., Mukherjee, I., Patel, A. D., & Paul, G. (2023). An intelligent clustering framework for substitute recommendation and player selection. The Journal of Supercomputing, 1-33. [Google Scholar]
  5. Domino, K., Kundu, A., Salehi, Ö., & Krawiec, K. (2022). Quadratic and higher-order unconstrained binary optimization of railway rescheduling for quantum computing. Quantum Information Processing, 21(9), 337. [Google Scholar]
  6. D-Wave, Ocean-Dimod-Models: BQM, CQM, QM, others. (n.d.). Retrieved December 2023, from https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/models.html [Google Scholar]
  7. D-Wave, The Quantum Computing Company, Programming the D-Wave QPU: Setting the chain strength, White Paper, (2020). Retrieved May 2024, from https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf [Google Scholar]
  8. Euroleague Fantasy Challenge - the Euroleague Fantasy Basketball. (n.d.). Retrieved December 2023, from https://euroleaguefantasy.euroleaguebasketball.net/en/home , [Google Scholar]
  9. Euroleague Fantasy Challenge Rules - the Euroleague Fantasy Basketball. (n.d.). Retrieved December 2023, from https://euroleaguefantasy.euroleaguebasketball.net/en/rules-fantasy-euroleague [Google Scholar]
  10. Fang, Y. L., & Warburton, P. A. (2020). Minimizing minor embedding energy: an application in quantum annealing. Quantum Information Processing, 19(7), 191. [Google Scholar]
  11. Farhi, E., Goldstone, J., Gutmann, S., & Sipser, M. (2000). Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106. [Google Scholar]
  12. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., & Preda, D. (2001). A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292(5516), 472-475. [Google Scholar]
  13. Glover, F., Kochenberger, G., & Du, Y. (2019). Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models. 4or, 17, 335-371. [Google Scholar]
  14. Goodrich, T. D., Sullivan, B. D., & Humble, T. S. (2018). Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quantum Information Processing, 17, 1-26. [Google Scholar]
  15. Hauke, P., Katzgraber, H.K., Lechner, W., Nishimori, H. & Oliver, W.D. (2020). Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Pyhsics, 83(5), 054401. [Google Scholar]
  16. Ikeda, K., Nakamura, Y., & Humble, T. S. (2019). Application of quantum annealing to nurse scheduling problem. Scientific reports, 9(1), 12837. [Google Scholar]
  17. Iturrospe, A. (2021). Optimizing decision making for soccer line-up by a quantum annealer. arXiv preprint arXiv:2112.13668. [Google Scholar]
  18. Jha, A., Kar, A. K., & Gupta, A. (2023). Optimization of team selection in fantasy cricket: a hybrid approach using recursive feature elimination and genetic algorithm. Annals of Operations Research, 325(1), 289-317. [Google Scholar]
  19. Kadowaki, T., & Nishimori, H. (1998). Quantum annealing in the transverse Ising model. Physical Review E, 58(5), 5355. [Google Scholar]
  20. Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680. [Google Scholar]
  21. Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in physics, 2, 5. [Google Scholar]
  22. Mahrudinda, M., Supian, S., & Chaerani, D. (2020). Optimization of The Best Line-up in Football using Binary Integer Programming Model. International Journal of Global Operations Research, 1(3), 114-122. [Google Scholar]
  23. Malcolm, J. D., Roth, A., Radic, M., Martin-Ramiro, P., Oillarburu, J., Orus, R., & Mugel, S. (2022). Multi-disk clutch optimization using quantum annealing. arXiv preprint arXiv:2208.05916. [Google Scholar]
  24. McGeoch, C., Farre, P., & Bernoudy, W. (2020). D-Wave hybrid solver service+ Advantage: Technology update. Tech. Rep. [Google Scholar]
  25. McGeoch, C., & Farre, P., (2021). The advantage system: Performance update. D-Wave: The Quantum Computing Company, Tech. Rep. [Google Scholar]
  26. Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., & Parney, B. (2017). Traffic flow optimization using a quantum annealer. Frontiers in ICT, 4, 29. [Google Scholar]
  27. Rajak, A., Suzuki, S., Dutta, A., & Chakrabarti, B. K. (2022). Quantum Annealing: An Overview. arXiv preprint arXiv:2207.01827. [Google Scholar]
  28. Robel, M., Khan, M. A. R., Ahammad, I., Alam, M. M., & Hasan, K. (2024). Cricket Players Selection for National Team and Franchise League using Machine Learning Algorithms. Cloud Computing and Data Science, 108-139. [Google Scholar]
  29. Salehi, Ö., Glos, A., & Miszczak, J. A. (2022). Unconstrained binary models of the travelling salesman problem variants for quantum optimization. Quantum Information Processing, 21(2), 67. [Google Scholar]
  30. Yarkoni, S., Raponi, E., Bäck, T., & Schmitt, S. (2022). Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics, 85(10), 104001. [Google Scholar]
  31. Zaman, M., Tanahashi, K., & Tanaka, S. (2021). PyQUBO: Python library for mapping combinatorial optimization problems to QUBO form. IEEE Transactions on Computers, 71(4), 838-850. [Google Scholar]