- Apolloni, B., Carvalho, C., & De Falco, D. (1989). Quantum stochastic optimization. Stochastic Processes and their Applications, 33(2), 233-244. [Google Scholar]
- Ayanzadeh, R., Halem, M., & Finin, T. (2020). Reinforcement quantum annealing: A quantum-assisted learning automata approach. arXiv: 2001.00234 [quant-ph]. [Google Scholar]
- Combining machine learning and optimization modeling in fantasy basketball. (2023). Retrieved December 2023, from https://www.gurobi.com/jupyter_models/combining-machine-learning-and-optimization-modeling-in-fantasy-basketball/ [Google Scholar]
- Das, N. R., Mukherjee, I., Patel, A. D., & Paul, G. (2023). An intelligent clustering framework for substitute recommendation and player selection. The Journal of Supercomputing, 1-33. [Google Scholar]
- Domino, K., Kundu, A., Salehi, Ö., & Krawiec, K. (2022). Quadratic and higher-order unconstrained binary optimization of railway rescheduling for quantum computing. Quantum Information Processing, 21(9), 337. [Google Scholar]
- D-Wave, Ocean-Dimod-Models: BQM, CQM, QM, others. (n.d.). Retrieved December 2023, from https://docs.ocean.dwavesys.com/en/stable/docs_dimod/reference/models.html [Google Scholar]
- D-Wave, The Quantum Computing Company, Programming the D-Wave QPU: Setting the chain strength, White Paper, (2020). Retrieved May 2024, from https://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf [Google Scholar]
- Euroleague Fantasy Challenge - the Euroleague Fantasy Basketball. (n.d.). Retrieved December 2023, from https://euroleaguefantasy.euroleaguebasketball.net/en/home , [Google Scholar]
- Euroleague Fantasy Challenge Rules - the Euroleague Fantasy Basketball. (n.d.). Retrieved December 2023, from https://euroleaguefantasy.euroleaguebasketball.net/en/rules-fantasy-euroleague [Google Scholar]
- Fang, Y. L., & Warburton, P. A. (2020). Minimizing minor embedding energy: an application in quantum annealing. Quantum Information Processing, 19(7), 191. [Google Scholar]
- Farhi, E., Goldstone, J., Gutmann, S., & Sipser, M. (2000). Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106. [Google Scholar]
- Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., & Preda, D. (2001). A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292(5516), 472-475. [Google Scholar]
- Glover, F., Kochenberger, G., & Du, Y. (2019). Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models. 4or, 17, 335-371. [Google Scholar]
- Goodrich, T. D., Sullivan, B. D., & Humble, T. S. (2018). Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quantum Information Processing, 17, 1-26. [Google Scholar]
- Hauke, P., Katzgraber, H.K., Lechner, W., Nishimori, H. & Oliver, W.D. (2020). Perspectives of quantum annealing: Methods and implementations. Reports on Progress in Pyhsics, 83(5), 054401. [Google Scholar]
- Ikeda, K., Nakamura, Y., & Humble, T. S. (2019). Application of quantum annealing to nurse scheduling problem. Scientific reports, 9(1), 12837. [Google Scholar]
- Iturrospe, A. (2021). Optimizing decision making for soccer line-up by a quantum annealer. arXiv preprint arXiv:2112.13668. [Google Scholar]
- Jha, A., Kar, A. K., & Gupta, A. (2023). Optimization of team selection in fantasy cricket: a hybrid approach using recursive feature elimination and genetic algorithm. Annals of Operations Research, 325(1), 289-317. [Google Scholar]
- Kadowaki, T., & Nishimori, H. (1998). Quantum annealing in the transverse Ising model. Physical Review E, 58(5), 5355. [Google Scholar]
- Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. science, 220(4598), 671-680. [Google Scholar]
- Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in physics, 2, 5. [Google Scholar]
- Mahrudinda, M., Supian, S., & Chaerani, D. (2020). Optimization of The Best Line-up in Football using Binary Integer Programming Model. International Journal of Global Operations Research, 1(3), 114-122. [Google Scholar]
- Malcolm, J. D., Roth, A., Radic, M., Martin-Ramiro, P., Oillarburu, J., Orus, R., & Mugel, S. (2022). Multi-disk clutch optimization using quantum annealing. arXiv preprint arXiv:2208.05916. [Google Scholar]
- McGeoch, C., Farre, P., & Bernoudy, W. (2020). D-Wave hybrid solver service+ Advantage: Technology update. Tech. Rep. [Google Scholar]
- McGeoch, C., & Farre, P., (2021). The advantage system: Performance update. D-Wave: The Quantum Computing Company, Tech. Rep. [Google Scholar]
- Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., & Parney, B. (2017). Traffic flow optimization using a quantum annealer. Frontiers in ICT, 4, 29. [Google Scholar]
- Rajak, A., Suzuki, S., Dutta, A., & Chakrabarti, B. K. (2022). Quantum Annealing: An Overview. arXiv preprint arXiv:2207.01827. [Google Scholar]
- Robel, M., Khan, M. A. R., Ahammad, I., Alam, M. M., & Hasan, K. (2024). Cricket Players Selection for National Team and Franchise League using Machine Learning Algorithms. Cloud Computing and Data Science, 108-139. [Google Scholar]
- Salehi, Ö., Glos, A., & Miszczak, J. A. (2022). Unconstrained binary models of the travelling salesman problem variants for quantum optimization. Quantum Information Processing, 21(2), 67. [Google Scholar]
- Yarkoni, S., Raponi, E., Bäck, T., & Schmitt, S. (2022). Quantum annealing for industry applications: Introduction and review. Reports on Progress in Physics, 85(10), 104001. [Google Scholar]
- Zaman, M., Tanahashi, K., & Tanaka, S. (2021). PyQUBO: Python library for mapping combinatorial optimization problems to QUBO form. IEEE Transactions on Computers, 71(4), 838-850. [Google Scholar]
|