International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2018, Vol. 2(2) 69-78

Potential Solutions to Combat the Antibiotic and Pesticide Problem in Honey

Ekim Mor & Seyhun Yurdugül

pp. 69 - 78   |  DOI: https://doi.org/10.29329/ijiasr.2018.140.3

Published online: June 27, 2018  |   Number of Views: 164  |  Number of Download: 898


Abstract

The presence of pesticides and antibiotics are regarded as a great problem in honey since honey should be one of the purest food in the world.  This is mostly due to the uncontrollable and intensive use of pesticides in agriculture and preference of antibiotics in apiculture for getting rid of bacterial infections. This review emphasizes the importance of these substances as well as the health-related problems in honey and proposing different novel food processing techniques to combat this problem without disrupting the physicochemical properties of honey.  Among these novel technologies, cold plasma, ultrasonication, and high hydrostatic pressure are either reported or recommended to fight against unwanted organisms causing quality loss in honey.  Therefore using these technologies were reported to be environmentally friendly, as since they are included in non-thermal methods, avoiding temperature abuse and they are cost-independent.  Cold plasma technology is a recommended method to get rid of not only viable bacteria but also it is found to be effective against spores.

Keywords: antibiotics, pesticides, honey, cold plasma, ultrasonication, high hydrostatic pressure.


How to Cite this Article

APA 6th edition
Mor, E. & Yurdugul, S. (2018). Potential Solutions to Combat the Antibiotic and Pesticide Problem in Honey . International Journal of Innovative Approaches in Science Research, 2(2), 69-78. doi: 10.29329/ijiasr.2018.140.3

Harvard
Mor, E. and Yurdugul, S. (2018). Potential Solutions to Combat the Antibiotic and Pesticide Problem in Honey . International Journal of Innovative Approaches in Science Research, 2(2), pp. 69-78.

Chicago 16th edition
Mor, Ekim and Seyhun Yurdugul (2018). "Potential Solutions to Combat the Antibiotic and Pesticide Problem in Honey ". International Journal of Innovative Approaches in Science Research 2 (2):69-78. doi:10.29329/ijiasr.2018.140.3.

References
  1. Al-Waili,  N., Salom, K., Al-Ghamdi, A., and Ansari, M.J. (2012). Antibiotic, Pesticide, and Microbial Contaminants of Honey: Human Health Hazards, The Scientific World Journal,1-9 , DOI:10.1100/2012/930849. [Google Scholar]
  2. Batabyal, A.A. and Nijkamp, P. (2005). Alternate strategies for managing resistance to antibiotics and pesticides, Environmental Economics and Policy Studies, 7, 39-51. DOI: 10.1007/BF03353944 [Google Scholar]
  3. Connor, M., Flynn, PB., Fairley, DJ., Marks, N., Manesiotis, P., Graham, WG., Gilmore, BF., McGrath, JW. (2017). Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma, Scientific Reports, 7, DOI: 10.1038/srep41814. [Google Scholar]
  4. Derebaşı, E., Bulut, G., Col, M., Güney, F., Yaşar, N. and Ertürk, Ö. (2014). Physicochemical and residue analysis of Honey From Black Sea Region of Turkey, Fresenius Environmental Bulletin, 23. 1.10-17. [Google Scholar]
  5. Gacic, M., Bilandzic N., Sipusic, DI., Petrovic, M., Kos, B., Vahcic, N.and Suskovic, J. (2015). Degradation of Oxytetracycline, Streptomycin, Sulphathiazole and Chloramphenicol Residues in Different Types of Honey, Food Technology and Biotechnology, 53, 154-162. DOI:  10.17113/ftb.53.02.15.3934. [Google Scholar]
  6. Heo, NS., Lee, MK., Kim, GW., Lee, SJ., Park, JY. and  Park, TJ. (2014). Microbial inactivation and pesticide removal by remote exposure of atmospheric air plasma in confined environments, Journal of Bioscience and Bioengineering, 117(1), 81-85, DOI:10.1016/j.jbiosc.2013.06.007.  [Google Scholar]
  7. Johnson S. and Jadon N., (2010). CSE Study: Antibiotic Residues in Honey, Centre For Science and Environment, Pollution Monitoring Laboratory, New Delhi, India. [Google Scholar]
  8. Johnson, RM., Dahlgren, L., Siegfried, BD. and Ellis, MD. (2013). Acaricide, Fungicide and Drug Interactions in Honey Bees (Apis mellifera), Plos One, 8, 1, DOI: 10.1371/journal.pone.0054092. [Google Scholar]
  9. Kasiotis, KM., Tzouganaki, ZD. and Machera, K. (2018). Chromatographic determination of monoterpenes and other acaricides in honeybees: Prevalence and possible synergies, Science of the Total Environment, 625, 96-105, DOI:10.1016/j.scitotenv.2017.12.244. [Google Scholar]
  10. Kaufmann, A. and Kaenzig, A. (2004). Contamination of honey by the herbicide asulam and its antibacterial active metabolite sulfanilamide, Food Additives and Contaminants, 21(6), 564-571, DOI: 10.1080/02652030410001677790. [Google Scholar]
  11. Leyva-Daniel, DE., Escobedo-Avellaneda, Z., Vilialobos-Castillejos, F. Alamilla-Beltran, L.  and Welti-Chanes, J. (2017). Effect of high hydrostatic pressure applied to a Mexican honey to increase its microbiological and functional quality, Food and Bioproducts Processing , 102, 299-306, DOI: 10.1016/j.fbp.2017.01.001.  [Google Scholar]
  12. Mutinelli, F. (2003). Practical Application of Antibacterial Drugs for the Control of Honey Bee Diseases, Apiacta 38,149-155. [Google Scholar]
  13. Nasseri, S., Mahvi, AH., Seyedsalehi, M., Yaghmaeian, K., Nabizadeh, R., Alimohammadi, M. and Safari, GH. (2017). Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix, Journal of Molecular Liquids, 241, 704-714, DOI: 10.1016/j.molliq.2017.05.137. [Google Scholar]
  14. Onur, I.,Misra, NN., Barba, FJ., Putnik, P., Lorenzo, JM., Gokmen, V.  and Alpas, H. ( 2018). Effects of ultrasound and high pressure on physicochemical properties and HMF formation in Turkish honey types, Journal of Food Engineering, 219, 129-136. DOI: 10.1016/j.jfoodeng.2017.09.019.  [Google Scholar]
  15. Pankaj, SK. and Keener, KM. (2017). Cold plasma: background, applications and current trends, Current Opinion in Food Science, 16, 49-52, DOI: 10.1016/j.cofs.2017.07.008. [Google Scholar]
  16. Paul, S., Hossen, S., Tanvir, EM., Afroz, R., Hossen, D., Das, S., Bhoumik, NC., Karim, N., Juliana, FM., Gan, SH., and Khalil, I. (2017). Minerals, Toxic Heavy Metals, and Antioxidant Properties of Honeys from Bangladesh, Hindawi Journal of Chemistry, 6101793, 1-11, DOI:10.1155/2017/6101793. [Google Scholar]
  17. Sarangapani, C., O'Toole, G., Cullen, PJ. and Bourke, P. (2017). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries, Innovative Food Science & Emerging Technologies, 44, 235-241, DOI: 10.1016/j.ifset.2017.02.012.  [Google Scholar]
  18. Serna-Galvis, EA., Silva-Agredo, J., Giraldo-Aguirre, AL., Florez-Acosta, OA. and  Torres-Palma, RA. (2016). High frequency ultrasound as a selective advanced oxidation process to remove penicillinic antibiotics and eliminate its antimicrobial activity from water, Ultrasonics Sonochemistry, 31, 276-283, DOI: 10.1016/j.ultsonch.2016.01.007.  [Google Scholar]
  19. Shi, XM., Liu, JR., Xu, GM., Wu, YM., Gao, LG., Li, XY., Yang, Y. and Zhang, GJ. (2018). Effect of low-temperature plasma on the degradation of omethoate residue and quality of apple and spinach, Plasma Science & Technology, 20(4) , DOI: 10.1088/2058-6272/aa9b78.  [Google Scholar]
  20. Tillotson, GS, Doern, GV and Blondeau, JM. (2006). Optimal antimicrobial therapy: The balance of potency and exposure, Expert Opin Invest Drugs, 15, 335–337, DOI:10.1517/13543784.15.4.335. [Google Scholar]
  21. Traver, BE, Feazel-Orr, HK , Catalfamo, KM, Brewster, CC. and Fell, RD. (2018). Seasonal effects and the impact of In-Hive pesticide treatments on parasite, pathogens, and health of honey bees, Journal of Economic Entomology, 111(2), 517-527, DOI: 10.1093/jee/toy026. [Google Scholar]
  22. Wang, J., He, MF., Zhang, DL., Ren, ZY., Song, TS. and Xie, JJ. (2017). Simultaneous degradation of tetracycline by a microbial fuel cell and its toxicity evaluation by zebrafish, RSC Advances, 7(70), 44226-44233,  DOI: 10.1039/c7ra07799h. [Google Scholar]
  23. Wen, X., Wang, Y., Zou, YD., Ma, BH., Wu, YB. (2018). No evidential correlation between veterinary antibiotic degradation ability and resistance genes in microorganisms during the biodegradation of doxycycline, Ecotoxicology and Environmental Safety, 147, 759-766 DOI: 10.1016/j.ecoenv.2017.09.025. [Google Scholar]
  24. Yao, JX., Zhu, YC., Adamczyk, J., and Luttrell, R. (2018). Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities, Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 209, 9-17, DOI: 10.1016/j.cbpc.2018.03.005.  [Google Scholar]
  25. URL1:http://www.pcs.agriculture.gov.ie/aboutus/aboutpesticides/whydoweneedpesticides/  [Google Scholar]
  26. (cited: 13.06.2018) [Google Scholar]
  27. URL 2: http://www.ethicalconsumer.org/ethicalreports/honey/beewelfareandhoney.aspx (cited: 13.06.2018) [Google Scholar]