International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2018, Vol. 2(2) 58-68

Effect of the entomopathogenic fungus Metarhizium anisopliae against Mosquitos (Aedes aegypti) in vitro conditions

M. N. Yakubu, F. M. Adamu, A. A. Barde, M. Muhammad & F. Tahir

pp. 58 - 68   |  DOI: https://doi.org/10.29329/ijiasr.2018.140.2

Published online: June 27, 2018  |   Number of Views: 280  |  Number of Download: 844


Abstract

Entomopathogenic fungi are promising new biological tool for the control of pests and pose no risk to man and non-targeted organisms. Isolation and identification of native entomopathogenic fungi in a field is necessary for the successful control of pest in a particular region.

Experiment was conducted to evaluate the occurrence of entomopathogenic fungi from different soil and their efficacy in the control of mosquitos. Using rain beetle, the fungi were isolated by insect baiting method using PDA. Morphological identification of the isolated fungi showed Metarhizium anisopliae. The result of the study showed a variation in the occurrence of the Metarhizium anisopliae at the three locations. The pathogenicity of the isolated fungi was tested on Aedes eagyptii larvae in three different concentrations (1.8.103, 3.6.103 and 4.5.103 conidia/ml). The result showed a progressive increased in larval mortality with an increased number of days. The mortality varied from 4 to 100%. Rapid larval mortality was observed two days after spraying, mortality was highest and relatively uniform at higher concentration. No mortality was observed in the control treatments. The test showed LC50 value of 14.5.103, 12.9.103, 1.4.103, 0.4.103, 0.4.103 and 0.1.103 conidia/ml after exposure for 1, 2, 3, 4, 5, and 6 days respectively.

The outcome of this research showed variation in the diversity of entomopathogenic fungi in different soil location.  Metarhizium anisopliae look promising in the control of the Aedes eagyptii mosquito larvae and should be tested in the field, or this could be the starting point for a genetic experiment.

Keywords: Metarhizium anisopliae, Aedes eagyptii, biocontrol


How to Cite this Article

APA 6th edition
Yakubu, M.N., Adamu, F.M., Barde, A.A., Muhammad, M. & Tahir, F. (2018). Effect of the entomopathogenic fungus Metarhizium anisopliae against Mosquitos (Aedes aegypti) in vitro conditions . International Journal of Innovative Approaches in Science Research, 2(2), 58-68. doi: 10.29329/ijiasr.2018.140.2

Harvard
Yakubu, M., Adamu, F., Barde, A., Muhammad, M. and Tahir, F. (2018). Effect of the entomopathogenic fungus Metarhizium anisopliae against Mosquitos (Aedes aegypti) in vitro conditions . International Journal of Innovative Approaches in Science Research, 2(2), pp. 58-68.

Chicago 16th edition
Yakubu, M. N., F. M. Adamu, A. A. Barde, M. Muhammad and F. Tahir (2018). "Effect of the entomopathogenic fungus Metarhizium anisopliae against Mosquitos (Aedes aegypti) in vitro conditions ". International Journal of Innovative Approaches in Science Research 2 (2):58-68. doi:10.29329/ijiasr.2018.140.2.

References
  1. Alves, S.B. Alves, LFA. Lopes, R.B.  Pereira, R.M. Vieira and S.A. (2002). Potential of Some Metarhizium anisopliae Isolates for Control of Culex quinquefasciatus (Dipt. Culicidae). J. Entomo. 126: 504-509.   [Google Scholar]
  2. Amóra, S.S.A., Bevilaqua, C.M.L. Feijó, F.M.C. Pereira, R.H.M.A. Alves, N.D. Freire, F.A.M. Kamimura., M.T.K. De Oliveira, D.M. Lima, E.A.L.A and Rocha. M.F.G. (2010).  The effects of the fungus Metarhizium anisopliae var. acridum on different stages of Lutzomyia longipalpis (Diptera: Psychodidae). Acta Tropica 113: (3) 214-220 [Google Scholar]
  3. Amuwitagama, I., (2004) Analysis of pest management methods used for Rice stem borer (Scirpophaga incertulas) in Sri Lanka based on the concept of Sustainable Development, Lund University, November 2002.  [Google Scholar]
  4. Araújo, H. R. C., Carvalho, D. O., Ioshino, R. S., Costa-da-Silva, A. L., Capurro, M. L. (2015). Aedes aegypti control strategies in Brazil: incorporation of new technologies to overcome the persistence of dengue epidemics. Insects. 6(4): 576-94. [Google Scholar]
  5. Arthurs, S. and Thomas, M.B. (2000). Effects of a mycoinsecticide on feeding and fecundity of the brown locust Locustana pardalina. Biocontr. Sci. Techn. 10: 321-329. [Google Scholar]
  6. Benserradj, O., and Mihoubi, I. (2014). Larvicidal activity of entomopathogenic fungi Metarhizium   anisopliae against mosquito larvae in Algeria. Int.J.Curr.Microbiol.App.Sci. 3(1): 54-62   [Google Scholar]
  7. Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., Hay, S. I. (2013). The global distribution and burden of dengue. Nature. 496(7446): 504-7. [Google Scholar]
  8. Bidochka, M.J., Kamp, A.M., Lavender, T. M., Dekoning, J., De Croos, J. N. A., (2001). Habitat association in two genetic groups of the insect pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl. Environ. Microbiol. 67, 1335-1342 [Google Scholar]
  9. Blanford, S., Chan, B. H. K., Jenkins, N., Sim, D., Turner, R. J., Read, A. F., and Thomas, M. B. (2005). ‘Fungal Pathogen Reduces Potential for Malaria Transmission’, Science, 308, 1638-1641. [Google Scholar]
  10. Daoust, R.A., and Roberts, D.W. (1983). Studies on the prolonged storage of Metarhizium anisopliae conidia: effect of temperature and relative humidity on conidial viability and virulence against mosquitoes. J. Invertebr. Pathol .41: 143-150.  [Google Scholar]
  11. Darbroa, J. M., Grahamb, R. I., Kaya, B. H., Ryana, P. A., and Thomase, M. B. (2011). Evaluation of entomopathogenic fungi as potential biological control agents of the dengue mosquito, Aedes aegyptii (Diptera: Culicidae), Biocontrol Science and Technology, 21:9, 1027-1047. [Google Scholar]
  12. Eilenberg, J and Hokkanen, H. M. T. (Eds) (2006) An Ecological and Societal Approach to Biological control.  Dordrecht, Springer. Chapter 1, the vision. [Google Scholar]
  13. Farenhorst, M., Mouatcho, J.C., Kikankie, C.K., Brooke, B.D., Hunt, R.H., Thomas, M.B., Koekemoer, L.L., Knols, B.G.J., and Coatzee, M. (2009). ‘Fungal Infection Counters Insecticide Resistance in African Malaria Mosquitoes’, Proceedings of the National Academy of Sciences, 106, 17443-17447. [Google Scholar]
  14. Fauci, A. S., Morens, D. M. (2016). Zika virus in the Americas - yet another arbovirus threat. N Engl J Med. 374(7): 601-4. [Google Scholar]
  15. Finney, D.J. (1971). Probit analysis, 3rd edn. Cambridge University Press, Cambridge, UK. [Google Scholar]
  16. Forstinus, N. O., Ikechukwu, E., Emenike, M. P., Osita, O. (2017). Synthetic insecticides, phytochemicals and mosquito resistance: Academia Journal of Biotechnology 5(8): 118-12517  [Google Scholar]
  17. Garcı ´a, G.P., Flores, A.E., Ferna ´ndez-Salas, I., Saaveda-Rodrı ´guez, K., Reyes-Solis, G., Lozano-Fuentes, S., Bond, J.G., Casas-Martı ´nez, M., Ramsey, J.M., Garcı ´a-Rejo ´n, J., Domı ´nguez-Galera, M., Ranson, H., Hemingway, J., Eisen, L., and Black, W.C. (2009). ‘Recent Rapid Rise of a Permethrin Knock Down Resistance Allele in Aedes aegypti in Me ´xico’, Public Library of Science Neglected Tropical Diseases, 3, e531.  [Google Scholar]
  18. Goettel, M. S., Hajek, A. E., Siegel, J. P., and H.C. Evans (2001). Safety of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N, editors. Fungi as biocontrol agents: progress, problems and potential. Wallingford: CAB International, pp.347-376. [Google Scholar]
  19. Harry, C. E., Simon, L. E., Robert, W. B. (2018). Entomopathogenic fungi and their potential for the management of Aedes aegypti (Diptera: Culicidae) in the Americas, 113(3): 206-214 [Google Scholar]
  20. Hemingway, J., and Ranson, H. (2000). ‘Insecticide Resistance in Insect Vectors of Human Disease’, Annual Review of Entomology, 45, 371-391. [Google Scholar]
  21. Humber R. A. (1997). Fungi: Identification. In: Lacey LA editor. Manual of Techniques in Insect Pathology, 5-1: 153-185.  San Diego: Academic Press [Google Scholar]
  22. Kaushal K. S., Ajoy, Kr. C., Priyanka, K. (2016). Entomopathogenic Fungi, TM Bhagalpur University, Bhagalpur, India  [Google Scholar]
  23. Lacey, L. A., Grazywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., Goettel, M. S (2015). Insect pathogens as biological control agent: Back to future. Journal Invertebrate Pathology, 132:1-41. [Google Scholar]
  24. Liu, s. F., Ye, Z. H., Jiang, S. R. (2007). Isolation and virulence test of Metarhizium. J.Anhui. Sci. 35(17): 5058-5059, 5077 [Google Scholar]
  25. Marit, F. and Bart, G. J. K. (2007). Fungal entomopathogens for the control of adult mosquitoes: a look at the issues, Wageningen University and Research Centre, volume 18: 51 [Google Scholar]
  26. McCray E.M, Jr.  Womelderoff, D.J.  Husbands, R.C and Eliason, D.A. (1973). Laboratory observation and field tests with Legenidium against California Mosquitoes. Proceed. Califo. Mosquito Control Association 41:123 128  [Google Scholar]
  27. Messmer T., Dahl G. (2009). Wildlife and Pesticides: A practical guide to reducing the risk. 15 June [online] Available from: http://www.ag.ndsu.edu/pubs/ansci/wildlife/wl1017-1.htm  [Google Scholar]
  28. Ponlawat, A., Scott, J.G., and Harrington, L.C. (2005). ‘Insecticide Susceptibility of Aedes aegypti and Aedes albopictus across Thailand’, Journal of Medical Entomology, 42, 821-825. [Google Scholar]
  29. Sandhu, S. S., Rajak, R. C., and Hasija SK (2000). Potential of Entomopathogens For the Biological Management of Medically Important Pest: Progress and Prospect. Glimpses Plant Sci. 2000: 110–117 [Google Scholar]
  30. Scholte, E.J., Knols, B.G.J.K. Samson, R. A and Takken, W. (2004). Entomopathogenic fungi for mosquito control: a review. J. Insect Sci. 4:1.  [Google Scholar]
  31. Scholte, E.J., Ng`habi, K.  Kihonda, J.  Takken, W.  Paaijmans, K.  Abdula, S.Killeen, G.F and   Knols, B.G.J. (2005). An Entomopathogenic Fungus for Control of Adult African Malaria Mosquitoes, Science. 308: 1641-1642.  [Google Scholar]
  32. Scholte, E.J., Ng`habi, K.  Kihonda, J.  Takken, W.  Paaijmans, K.  Abdula, S.Killeen, G.F and   Knols, B.G.J. (2005). An Entomopathogenic Fungus for Control of Adult African Malaria Mosquitoes, Science. 308: 1641-1642.  [Google Scholar]
  33. Scholte, E.J., Takken, W.  and Knols, B.G.J. (2003). Pathogenicity of six east African entomopathogenic fungi to adult Anopheles gambiaesis (Diptera: Culicidae) mosquitoes. Proceedings of Experimental and Applied Entomology NEV, Amsterdam. 14: 25-29  [Google Scholar]
  34. Sergio, R. S., Jorge, S. L., Medina, R. F (2011). Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, México, and their virulence towards thrips and whiteflies.  [Google Scholar]
  35. World health organisation (2017). Global insecticides resistance  [Google Scholar]
  36. World Health Organization (2009). Dengue: guidelines for treatment, prevention and control. Geneva: World Health Organization. [Google Scholar]
  37. World Health Organization (2011). ‘Dengue and Dengue Hemorrhagic Fever’. Available at http://www.who.int/ mediacentre/factsheets/fs117/en/index.html. [Google Scholar]
  38. World health report (1996). Fighting disease, fostering development. [Google Scholar]