International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2018, Vol. 2(2) 41-57

Antibiotic and Disinfectant Susceptibility Patterns of Airborne Bacteria Isolated from Restaurants in Nigeria

Bashar Haruna Gulumbe & Abdullahi Hassan Kawo

pp. 41 - 57   |  DOI: https://doi.org/10.29329/ijiasr.2018.140.1

Published online: June 27, 2018  |   Number of Views: 365  |  Number of Download: 963


Abstract

Antibiotics resistant airborne bacteria in restaurants have considerable effect on not only the life of food handlers, but also the quality and stability of food products. This study was carried out with the objectives of identifying the type of airborne bacteria associated with the restaurants and their susceptibility patterns to commonly used antibiotics and disinfectants. Using depositional sampling technique, air samples were collected from restaurant kitchens and dining rooms and cultured aerobically. Bacterial isolates were identified based on biochemical tests and selective/differential plating. Among the ten (10) bacterial species isolated and identified, Staphylococcus aureus 7 (19%), Micrococcus spp. 6 (17%), Staphylococcus spp. 5 (14%), and Bacillus subtilis 4 (11%) were predominant. A total of fourteen antibiotics were used in this study:  Amoxicillin + clavulanic acid (AU) (25), gentamycin (CN) (10μg), pefloxacin (PEF) (10μg), ofloxacin (OFX) (30μg), streptomycin (S) (30μg), chloramphenicol (CH) (30μg), co-trimoxazole. (SXT) (30μg), fluoroquinolone (SP) (10μg), ciprofloxacin (CPX) ((10μg)), amoxicillin (AM) (30μg), ampiclox (APX) (30μg), erythromycin (E) (19μg), ceftriaxone (CTR) (30μg) and cefuroxime (Z) (20μg). Antimicrobial susceptibility test results revealed that S. aureus had susceptibility of 6 (85.7%) each to ciprofloxacin and gentamycin but resistant to amoxicillin, ampiclox and cefuroxime while Pseudomonas aeruginosa had susceptibility of 3 (100%) each to amoxicillin + clavulanic acid and gentamycin but resistant to fluoroquinolone and co-trimoxazole. Susceptibility to Jik and Dettol was appreciable; they were bacteriostatic at 25-100% concentrations (Minimum Inhibition Concentrations (MIC) and bactericidal (Minimum Bactericidal Concentrations (MBC) at mostly 100% concentration. ‘Mama Lemon’ was bacteriostatic to only two isolates at 50 and 100% concentrations but not bactericidal. Enterobacter sp. was susceptible to neither the antibiotics nor the disinfectants.  All the three disinfectants showed no efficacy at concentrations lower than 25%.  The presence of potentially pathogenic bacteria which are not susceptible to antibiotics and disinfectants in the air of restaurants constitutes a serious health hazard not only to the restaurant workers and their customers, but also the general public.

Keywords: Indoor air contamination, Bioaerosols, Bacteria, Restaurants, Susceptibility pattern, Antimicrobials, Disinfectants, Minimum Inhibitory Concentration, Minimum Bactericidal Concentration.


How to Cite this Article

APA 6th edition
Gulumbe, B.H. & Kawo, A.H. (2018). Antibiotic and Disinfectant Susceptibility Patterns of Airborne Bacteria Isolated from Restaurants in Nigeria . International Journal of Innovative Approaches in Science Research, 2(2), 41-57. doi: 10.29329/ijiasr.2018.140.1

Harvard
Gulumbe, B. and Kawo, A. (2018). Antibiotic and Disinfectant Susceptibility Patterns of Airborne Bacteria Isolated from Restaurants in Nigeria . International Journal of Innovative Approaches in Science Research, 2(2), pp. 41-57.

Chicago 16th edition
Gulumbe, Bashar Haruna and Abdullahi Hassan Kawo (2018). "Antibiotic and Disinfectant Susceptibility Patterns of Airborne Bacteria Isolated from Restaurants in Nigeria ". International Journal of Innovative Approaches in Science Research 2 (2):41-57. doi:10.29329/ijiasr.2018.140.1.

References
  1. Alamin, M.A., Alqurashi, A.M., Elsheikh, A.S.,Yasin T.E. 2013. Mastitis incidence and bacterial causative agents isolated from lactating camel (Camelus dromedaries). IOSR J. Agric and Vet. Sci. 2 (3), 07-10. [Google Scholar]
  2. Antibiotic Expert Group, 2006. Therapeutic Guidelines: Antibiotic. 13th ed. North Melbourne: Therapeutic Guidelines Limited. [Google Scholar]
  3. Awad, A. H. A., 2007. Airborne dust, bacteria, actinomycetes and fungi at a flourmill. Aerobiologia 23(1):59-69. [Google Scholar]
  4. Awodele, O., Emeka, P. M., Agbamuche, H. C., Akintonwa A., 2007. The antimicrobial activities of some commonly used disinfectants on Bacillus subtilis, P. aeruginosa and Candida albicans. Afri. J. Biotechno. 6(8), 987-990. [Google Scholar]
  5. Aydogdu, H., Asan, A., Otkun, M. T., 2010. Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environ. Monit. Assess. 164(1-4), 53-66.  [Google Scholar]
  6. Beveridge, T.J. "Use of the gram stain in microbiology". Biotechnic and Histochemistr 2001; 76 (3): 111–8. [Google Scholar]
  7. Cheesbrough M. Medical Laboratory Manual. Tropical Health Technology, Low priced Edition. Doddington, Cambridgeshire, England, 2003; pp. 20-35. [Google Scholar]
  8. Cheesbrough, M., 2005. District Laboratory Practice in Tropical Countries. 2nd ed., New York: Cambridge University Press, pp. 38-39. [Google Scholar]
  9. Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries. Part 2. Cambridge University Press, Cambridge, 434.  [Google Scholar]
  10. Chikere, C.B., Chikere, B.O., Omoni, V.T. 2008. Antibiogram of Clinical Isolates from a Hospital in Nigeria.  Afri. J. Biotechno. 7(24), 4359-4363. [Google Scholar]
  11. Chollet, R., Chevalier, J., Bollet, C., Pages, J., Davin-Regli. A., 2004.  RamA is an Alternate Activator of the Multidrug Resistance Cascade in Enterobacter aerogenes. Antimicrob. Agents Chemother. 48(7), 2518. [Google Scholar]
  12. Clinical and Laboratory Standards Institute, 2009. Performance standards for antimicrobial disc susceptibility tests; approved Standard-tenth edition. CLSI document M02-A10, CLSI 29 (1). [Google Scholar]
  13. Daniel, C., 2004. The Evolution of Antibiotic Resistance. Act Facts. 33, 1-4. [Google Scholar]
  14. De Gheldre, Y., Maes, N., Francis R., De Ryck, R., 1997. Molecular Epidemiology of an Outbreak of Multidrug-Resistant Enterobacter aerogenes Infections and In-Vivo Emergence of Imipenem Resistance. J. Clini. Microbio. 35(1), 152–160. [Google Scholar]
  15. Diriba, L., Kassaye, A., Yared, M., 2016. Antibiotics Susceptibility Pattern of Hospital Indoor Airborne Bacteria in Hawassa University Teaching and Referral Hospital, South Ethiopia. Int. J. Mod. Chem. and Appl. Sci. 3(1), 287-292. [Google Scholar]
  16. El-Mahmood, A.M., Doughari J.H., 2009. Bacteriological Examination of Some Diluted Disinfectants routinely used in the Specialist Hospital Yola, Nigeria. Afri. J. Pharm. and Pharmacolo. 3(5), 185-190. [Google Scholar]
  17. Fahlgren, C., Åke, H., Douglas, N., Ulla, L.Z., 2010. Annual Variations in the Diversity, Viability, and Origin of Airborne Bacteria. J. Appl. and Environ. Microbiolo. 7(9), 3015–3025. [Google Scholar]
  18. Faille, C., Bénézech, T., Midelet-Bourdin, G., Lequette, Y., Clarisse, M., Ronse, G., 2014. Sporulation of Bacillus spp. within biofilms: A potential source of contamination in food processing environments. Food Microbiolo. 40, 64-74. [Google Scholar]
  19. Finch, R.G., 2004. Antibiotic resistance: a view from the prescriber. Nat. Rev. Microbiol. 2(12), 989-994. [Google Scholar]
  20. Fischer, G. and Dott W. (2003). Relevance of Airborne Fungi and their Secondary Metabolites for Environmental, Occupational and Indoor Hygiene. Arch. Microbiol., 179, 75-82. [Google Scholar]
  21. Gajadhar, T., Lara, A., Sealy, P, Adesiyun, A.A., 2003. Microbial Contamination of Disinfectants and Antiseptics in four Major Hospitals in Trinidad. Rev. Panam Salud Publica, 14(3), 193-200. [Google Scholar]
  22. Gallant, J. E., 2007. Drug Resistance after Failure of Initial Antiretroviral Therapy in Resource Elimited Countries. Clin. Infect. Dis. 44, 453-455. [Google Scholar]
  23. Ghotaslou, R., Bahrami, N., 2012. Antimicrobial Activity of Chlorhexidine, Peracetic Acid/peroxide Hydrogen and Alcohol based Compound on Isolated Bacteria in Madani Heart Hospital, Tabriz, Azerbaijan, Iran. Adv. Pharm. Bull. 2(1), 57-59. [Google Scholar]
  24. Gorny, R.L., Dutkiewicz, J., 2002. Bacterial and Fungal Aerosols in Indoor Environment in Central and Eastern Countries. Ann. Agric. Environ. Med, 9, 17–23. [Google Scholar]
  25. Hart, C. A., Kariuki, S., 1998. Antimicrobial resistance in developing countries. Br. Med. J. 317(7159), 647-650. [Google Scholar]
  26. Hernando, R. P., Rachel, J., Patrick L. G., Shawn, G. G., Taylor, J., Igor, B., 2011. Isolation of airborne Oxacillin-Resistant S. aureus from culturable air Samples of urban residences. J. Occup. Environ. Hyg. 8, 80–85. [Google Scholar]
  27. Iruoha, I.R., Oji A.E., Nwosu, O.K. and Amadi, E.S., 2011. Antimicrobial activity of Savlon, Izal and Z-germicide against clinical isolates of Pseudomonas aeruginosa from hospital wards. Eur. J. Dent. Med. 3(1), 32-35. [Google Scholar]
  28. Jirgi, A.J. Grove, B., Henry, J. and Nmadu N.J. (2016). Risk Attitude of Monocrop and Intercrop Farmers in Kebbi State, Nigeria. J. Econ. & Sustain. Dev. 7(8), 140-149. [Google Scholar]
  29. Johnson, T. and Case, C. (1995): "Chemical Methods of Control," Adapted from Laboratory Experiments in Microbiology, Brief Edition, 4th ed. Redwood City, CA: Benjamin/Cummings Publishing Co., available online from The National Health Museum, Access Excellence Activities Exchange. Retrieved 4th February, 2017, from http://www.accessexcellence.org/AE/AEC/CC/chance_activity.html [Google Scholar]
  30. Joshi, M., Srivastava, R.K., 2013. Identification of Indoor Airborne Microorganisms in Residential Rural Houses of Uttarakhand, India. Int. J. Curr. Microbiolo.  Appl. Sci. 2, 146–152. [Google Scholar]
  31. Joshi, S.M., 2008. The Sick Building Syndrome. Indian J. Occu. Environ. Med. 12(2), 61-64. [Google Scholar]
  32. Kabir, M. S., Farzana, M., Islam, S., Shorifujjaman, M., 2016. Microbiological pollutants in air and antibiotic resistance profile of some bacterial isolates. Jahangirnagar Uni. J. Biol. Sci. 5(1), 47-56. [Google Scholar]
  33. Kalwasińska, A., Burkowska, A., Wilk I., 2012. Microbial air contamination in indoor environment of the university library. Ann. Agric. Environ. Med. 19(1), 25-29. [Google Scholar]
  34. Kar, A., 2008. Pharmaceutical Microbiology. New Age International (P) Ltd., Publishers, Delhi. pp 216-217. [Google Scholar]
  35. Kumari, H.B.V., Nagarathna.S., Chandramuki, A., 2007. Antimicrobial resistance pattern among aerobic gram negative bacilli of lower respiratory tract specimens of intensive care unit patients in a neurocentre India. J. Chest Dis. All. Sci. 49, 19-22. [Google Scholar]
  36. Kumiko, K., Jun-ichi, W., Takaaki, K., Hideo, I. and Yoshichika, A. 2010. Correlation between reduced susceptibility to disinfectants and multidrug resistance among clinical isolates of Acinetobacter species. J. Antimicro. Chemother. 65, 1975–1983. [Google Scholar]
  37. Kumurya, A.S., Kawo, A.H., Uba, A., 2010. Prevalence and in-vitro susceptibility studies of bacteria isolated from hospital patients presenting with otitis media in Kano, Nigeria. Biol. Environ. Sci. J. for the Tropics, 7(1), 37-39. [Google Scholar]
  38. Laine, L., Perry, J.D., Lee, J., Oliver, M., James, A.L., Foata, C.D, Halimi, D., Orenga, S., Galloway, A. and Gould F.K. 2009. A novel chromogenic medium for isolation of Pseudomonas aeruginosa from the sputa of cystic fibrosis patients. Journal of Cystic Fibrosis, 8, 143–149. [Google Scholar]
  39. Laumbach, R.J., Kipen H.M., 2005. Bioaerosols and sick building syndrome: Particles, inflammation, and allergy. Curr. Opin. in Allerg. and Clini. Immonolo. 5(2), 135-139. [Google Scholar]
  40. Livermore, D. M., 2007. Introduction: The challenge of multiresistance. Int. J. Antimicrob. Agents, 3, S1-7. [Google Scholar]
  41. Macher J. M., 2017. Air Sampling Methods for Biological Contaminants. http://staffweb.itsligo.ie/staff/mabroaders/webbased/EnvSci/ES3/Air%20pollution/Air%20Sampling%20Methods%20for%20Biological%20Contaminants.htm [Google Scholar]
  42. Mahmoud, A., Hanan H. B., 2012. The prevalence of antimicrobial resistance in Clinical isolates from Gulf Corporation Council countries. Antimicrob. Resist. Infect. Contr. 1(26). doi: 10.1186/2047-2994-1-26. [Google Scholar] [Crossref] 
  43. Makris, A.T, Morgan, L., Gaber, D.J., 2000. Effect of a comprehensive infection control program on the incidence of infections in long-term care facilities. Am. J. Infect Control. 28, 3–7. [Google Scholar]
  44. Mandal, S., Pal, N.K., Chowdhury, I.H., Debmandal, M., 2009. Antibacterial activity of ciprofloxacin and trimethoprim, alone and in combinittion, against Vibrio cholerae O1 biotype El Tor serotype Ogawa isolates. Polish J. Microbiol. 58, 57-60. [Google Scholar]
  45. Manga, B. S., Oyeleke, S. B., 2009. Biochemical Tests. Essentials of Laboratory Practicals in Microbiology. Tobest Publisher, Minna, Niger State, Nigeria. Pp 20-67 [Google Scholar]
  46. Mezzatesta, M.L. Gona, F. and Stefani, S. (2012). Enterobactercloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 7: 887-902.  [Google Scholar]
  47. Menetrez, M.Y., Foarde, K.K., Dean, T.R., Betancourt, D.A., Moore, S.A., 2007. An evaluation of the protein mass of particulate matter. Atmosph. Environ. 41(37), 8264-8274 [Google Scholar]
  48. Moellering, R. C. Jr., 1998. Antibiotic resistance: Lessons for the future. Clini. Infect. Dis. 27 (suppl 1), S135–S140. [Google Scholar]
  49. National Nosocomial Infections Surveillance (NNIS), 2004. (System Report, data summary from January 1992 through June 2004). Am. J. Infect. Contr. 32(8), 470–85.  [Google Scholar]
  50. Nester, E.W., Anderson, D.G., Roberts, C.E., Nester, M.T., 2009. Microbiology: a Human Perspective, 6th edition. The McGraw-Hill Companies, Inc., New York. pp 480-481. [Google Scholar]
  51. Nickolas,S.,2017. What are some examples of stratified random sampling? www.investopedia.com  [Google Scholar]
  52. Ogunnusi T. A., Adeyinka R. B., 2016. Studies of antibiotics Resistance of Pseudomonas aeruginosa from Clinical and Environmental (Water and Soil) Samples. Eur. J. Pharma. Med. Res. 3(7), 59-62. [Google Scholar]
  53. Oke, M.A., Bello, A.B., Odebisi, M.B., Ahmed El-Imam, A.M., Kazeem, M.O., 2013. Evaluation of Antibacterial Efficacy of Some Alcohol-Based Hand Sanitizers Sold In Ilorin (North-Central Nigeria). Ife J. Sci. 15(1), 111‒117. [Google Scholar]
  54. Okore, C. C.,  Ogechukwu, N. M., Bright, C. O., Simon, C. O., Agaptus, U. O., Abba-Father, C. A., 2014. Antimicrobial Efficacy of Selected Disinfectants. Am. J. Biolo. and Life Sci. 2(2), 53-57. [Google Scholar]
  55. Olowe, O.A., Olayemi, A.B., Eniola, K.I.T., Adeyeba, O.A., 2004. Antibacterial Activity of Some Selected Disinfectants Regularly used in Hospitals. Afr. J. of Clini. and Exper. Microbial. 5 (1), 126-130.  [Google Scholar]
  56. Otokunefor, T.V., Usoh, C.U., 2009. Microbial contamination of in use disinfectants in small private medical facilities in Owerri, in south east Nigeria. Scientia Afr. 8(2), 17-25. [Google Scholar]
  57. Otoikhian, C.S.O. and Tanimowo, W.O. (2016) Identification of intestinal microbes of pig sold in local market in Niger delta environment. Nigerian Journal of Agriculture, Food and Environment. 12(1): 111-115.  [Google Scholar]
  58. Pastuszka, J.S., Kyaw Tha Paw, U., Lis, D.O., Wlazlo, A., Ulfig, K., 2000. Bacterial and Fungal Aerosol in Indoor Environment in Upper Silesia, Poland. Atmosph. Environ. 34, 3833–3842. [Google Scholar]
  59. Rajasekar, A., Balasubramanian, R., 2011. Assessment of airborne bacteria and fungi in food courts. Build. Environ. 46(10), 2081-2087. [Google Scholar]
  60. Ramanan. L., Adriano, D., Chand, W., Zaidi., A. K. M., 2013. Antibiotic resistance–the need for global solutions. The Lancet Infectious Diseases Commission. http://dx.doi.org/10.1016/S1473-3099 (13)70318-9. [Google Scholar]
  61. Rhem, S. J., Weber, T., 2007. The Far-reaching Impact of Antimicrobial Resistance. Clini. Infect. Dis. 45 (S2), S97-S98. [Google Scholar]
  62. Rutala, W. A., Weber D. J., 2004. The Benefits of Surface Disinfection. Am. J. of Infection Contr.  32(4), 226-229. [Google Scholar]
  63. Sabharwal, E. R., Sharma, R., 2015. Estimation of microbial air contamination by settle plate method: are we within acceptable limit. Scholars Academic J. Biosci. 3(8), 703-707. [Google Scholar]
  64. Safdar, S., Zulfiqar, A., Sikander, S., Shakil, A., Ian, C., Zaheer, A.N., 2015. Assessment of Airborne Microflora in the Indoor Micro-Environments of Residential Houses of Lahore, Pakistan. Aerosol and Air Quality Res. 15, 2385–2396. [Google Scholar]
  65. Tagoe, D.N., Gyande, V., Ansa, E.V.O., 2011. Bacterial contamination of mobile phones: When your mobile phone could transmit more than just a cell. Webmed Microbiol. 2(10), 2294. [Google Scholar]
  66. Teeuw, K.B., Vandenbroucke-Grauls, C., Verhoef, J., 1994. Airborne gram-negative bacteria and endotoxin in sick building syndrome: a study in Dutch governmental office buildings. Archive of Internal Med. 154(20), 2339-2345. [Google Scholar]
  67. Teshome, B., Tefera, G., Belete, B., Mekuria, A., 2016. Prevalence and antimicrobial susceptibility pattern of S. aureus from raw camel and goat milk from Somali region of Ethiopia. Afr. J of Microbiol. Res.10(28), 1066-1071. [Google Scholar]
  68. Thomas, B.T., Adeleke, A.J., Raheem-Ademola, R.R., Kolawole, R., Musa, O.S., 2012. Efficiency of some disinfectants on bacterial wound pathogens. Life Sci. J. 9(2), 752-755. [Google Scholar]
  69. Vandepitte, J., Verhaegen, J., Engbaek, K., Rohner, P., Piot, P., Heuck, C.C., 2003. Basic Laboratory Procedures in Clinical Bacteriology, 2nd edition WHO, Geneva. [Google Scholar]
  70. WHO, 2001. WHO Global strategy for containment of antimicrobial resistance. Geneva, Switzerland: World Health Organization. [Google Scholar]
  71. WHO, 2012. Antimicrobial resistance: no action today, no cure tomorrow, World Health Day. [Google Scholar]
  72. World Health Organization, 2003. Manual for the laboratory identification and antimicrobial susceptibility testing of Bacterial Pathogens of public health importance in the developing world. Boyce and Pillet. [Google Scholar]
  73. Yassin, M. F., Almouqatea, S., 2010. Assessment of airborne bacteria and fungi in anindoor and outdoor environment. Int. J Environ. Sci Technolo. 7(3), 535-544. [Google Scholar]