International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2024, Vol. 8(1) 1-20

Optimization of Berry Infusions with High Polphenol Content

Kıvılcım Yıldız, Esra Özyiğit, Pelin Günç Ergönül, Ebru Işitmezoğlu, Buze Tezcan & Elif Beyza Lermioğlu

pp. 1 - 20   |  DOI:

Published online: March 31, 2024  |   Number of Views: 15  |  Number of Download: 40


Goji berry, also known as wolfberry, is a plant that grows in the Asian region. It is a red-orange elliptical fruit with a sweet, sour taste due to the presence of phenolic compounds. Recently, goji berry is becoming more and more popular because of the health benefits of bioactive ingredients. The present study aims to determine infusion parameters for producing functional beverages rich in bioactive components and suitable for consumption with maximum benefit to human health. In this context, the response surface methodology (RSM) was used for experimental design. Three independent variables were determined, which are temperature (75–95 °C), time (5–15 min), and mass (2–5 g), to optimize the desired quality characteristics in goji berry teas and to evaluate the interactions of the independent variables. The three-variable experimental design was implemented 6 replications in the center point, resulting in 20 total trial patterns. The total phenolic content, total flavonoid content, antioxidant activity, anthocyanin content, and condensed tannin content of the samples were determined. For optimization, it is aimed that goji berry infusions have the values of maximum total phenolic content, total flavonoid content, antioxidant activity, anthocyanin content, and condensed tannin content. As a result of the analysis of variance (ANOVA), a meaningful model for total anthocyanin content, total flavonoid content, condensed tannin content, and phenolic content values could not be established (p<0.05), but statistically significant model was obtained for DPPH (p<0.05). Temperature and mass were found to be statistically significant (p<0.05) on DPPH. Depending on the levels of the selected quality characteristics, the parameters that will provide an optimum formulation of goji berry infusions were suggested as 85.77°C, 5 min., and 5 g, according to the desirability function (0.634). Thus, the parameters of antioxidant capacity, total phenolic substance, total anthocyanin, total flavonoid, and total condensed tannin content were determined to maximize bioactive substances and be beneficial for consumer health.

Keywords: Goji Berry, Infusion, Optimization, Antioxidant, Phenolic Content

How to Cite this Article

APA 6th edition
Yildiz, K., Ozyigit, E., Ergonul, P.G., Isitmezoglu, E., Tezcan, B. & Lermioglu, E.B. (2024). Optimization of Berry Infusions with High Polphenol Content . International Journal of Innovative Approaches in Science Research, 8(1), 1-20. doi: 10.29329/ijiasr.2024.666.1

Yildiz, K., Ozyigit, E., Ergonul, P., Isitmezoglu, E., Tezcan, B. and Lermioglu, E. (2024). Optimization of Berry Infusions with High Polphenol Content . International Journal of Innovative Approaches in Science Research, 8(1), pp. 1-20.

Chicago 16th edition
Yildiz, Kivilcim, Esra Ozyigit, Pelin Gunc Ergonul, Ebru Isitmezoglu, Buze Tezcan and Elif Beyza Lermioglu (2024). "Optimization of Berry Infusions with High Polphenol Content ". International Journal of Innovative Approaches in Science Research 8 (1):1-20. doi:10.29329/ijiasr.2024.666.1.

  1. Álvarez, R., Araya, H., Navarro-Lisboa, R., & Lopez de Dicastillo, C. (2016). Evaluation of polyphenol content and antioxidant capacity of fruits and vegetables using a modified enzymatic extraction. Food technology and biotechnology, 54(4), 462-467. [Google Scholar]
  2. Amagase, H., & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food research international, 44(7), 1702-1717. [Google Scholar]
  3. Astill, C., Birch, M. R., Dacombe, C., Humphrey, P. G., & Martin, P. T. (2001). Factors affecting the caffeine and polyphenol contents of black and green tea infusions. Journal of agricultural and food chemistry, 49(11), 5340-5347. [Google Scholar]
  4. Brand-Williams, W., Cuvelier, M.E. & Berset, C., (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1): 25-30. [Google Scholar]
  5. Broadhurst, R. B., and Jones, W. T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9): 788–794. Doi: [Google Scholar] [Crossref] 
  6. Cemeroğlu, B. (2018), Food Analysis. Bizim Büro Printing House. [Google Scholar]
  7. Cleverdon, R., Elhalaby, Y., McAlpine, M., Gittings, W., & Ward, W. (2018). Total Polyphenol Content and Antioxidant Capacity of Tea Bags: Comparison of Black, Green, Red Rooibos, Chamomile and Peppermint over Different Steep Times. Beverages, 4(1), 15. MDPI AG. Retrieved from [Google Scholar]
  8. Das, A., Kalita, A., Raychaiudhuri, U. et al. Synergistic effect of herbal plant extract (Hibiscus sabdariffa) in maintain the antioxidant activity of decaffeinated green tea from various parts of Assam. J Food Sci Technol 56, 5009–5016 (2019). [Google Scholar] [Crossref] 
  9. Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2015). Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. Journal of functional foods, 18, 1070-1085. [Google Scholar]
  10. Guo, D. J., Cheng, H. L., Chan, S. W., & Yu, P. H. F. (2008). Antioxidative activities and the total phenolic contents of tonic Chinese medicinal herbs. Inflammopharmacology, 16, 201-207. [Google Scholar]
  11. Irakli, M., Chatzopoulou, P., & Ekateriniadou, L. (2018a). Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Industrial Crops and Products, 124, 382-388. [Google Scholar]
  12. Irakli, M., Tsifodimou, K., Sarrou, E., & Chatzopoulou, P. (2018b). Optimization infusions conditions for improving phenolic content and antioxidant activity in Sideritis scardica tea using response surface methodology. Journal of applied research on medicinal and aromatic plants, 8, 67-74 [Google Scholar]
  13. Islam, T., Yu, X., Badwal, T. S., & Xu, B. (2017). Comparative studies on phenolic profiles, antioxidant capacities and carotenoid contents of red goji berry (Lycium barbarum) and black goji berry (Lycium ruthenicum). Chemistry Central Journal, 11(1), 1-8. [Google Scholar]
  14. Lee, Ki Won; Kim, Young Jun; Lee, Hyong Joo; Lee, Chang Yong (2003). Cocoa Has More Phenolic Phytochemicals and a Higher Antioxidant Capacity than Teas and Red Wine. Journal of Agricultural and Food Chemistry, 51(25): 7292–7295. doi:10.1021/jf0344385 [Google Scholar] [Crossref] 
  15. Li, Y., Guo, C., Yang, J. Wei, J., Xu, J. & Cheng, S. (2006), Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract, Food Chemistry, 96: 254–260. [Google Scholar]
  16. Liu, B., Xu, Q., & Sun, Y. (2020). Black goji berry (Lycium ruthenicum) tea has higher phytochemical contents and in vitro antioxidant properties than red goji berry (Lycium barbarum) tea. Food quality and safety, 4(4), 193-201. [Google Scholar]
  17. Ma, Z. F., Zhang, H., Teh, S. S., Wang, C. W., Zhang, Y., Hayford, F., ... & Zhu, Y. (2019). Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxidative medicine and cellular longevity, 2019. [Google Scholar]
  18. McAlpine, M. D., & Ward, W. E. (2016). Influence of steep time on polyphenol content and antioxidant capacity of black, green, rooibos, and herbal teas. Beverages, 2(3), 17. [Google Scholar]
  19. Moldovan, B., Hosu, A., David, L., & Cimpoiu, C. (2016). Total Phenolics, Total Anthocyanins, Antioxidant and Pro-oxidant Activity of Some Red Fruits Teas. Acta Chimica Slovenica, 63(2). [Google Scholar]
  20. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (1995). “Response Surface Methodology: Process and Product Optimization Using Designed Experiments.” John Wiley& Sons. Inc., New York, NY, 134-174. [Google Scholar]
  21. Oancea, S., Grosu, C., Ketney, O., Stoia, M. (2013). Conventional and ultrasound-assisted extracted of anthochyanins from blackberry and sweet cherry cultivars. Acta Chimica Sloveniva, 60, 383-389. [Google Scholar]
  22. Rittisak, S., Charoen, R., Choosuk, N., Savedboworn, W., & Riansa-ngawong, W. (2022). Response Surface Optimization for Antioxidant Extraction and Attributes Liking from Roasted Rice Germ Flavored Herbal Tea. Processes, 10(1), 125. [Google Scholar]
  23. Rossi, M., Giussani, E., Morelli, R., Scalzo, R. L., Nani, R. C., & Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International, 36(9-10), 999-1005. [Google Scholar]
  24. Şahin, S. (2013). Evaluation of antioxidant properties and phenolic composition of fruit tea infusions. Antioxidants, 2(4), 206-215. [Google Scholar]
  25. Saklar, S., Ertas, E., Ozdemir, I. S., & Karadeniz, B. (2015). Effects of different brewing conditions on catechin content and sensory acceptance in Turkish green tea infusions. Journal of food science and technology, 52(10), 6639-6646. [Google Scholar]
  26. Singh, R. P., Murthy, K. N.C. & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate peel and seed extracts using in vitro models, Journal of Agricultural and Food Chemistry, 50: 81–86 [Google Scholar]
  27. Singleton, V. L. & Rossi, J. A., (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16: 144–158. [Google Scholar]
  28. Sun, Y., Rukeya, J., Tao, W., Sun, P., & Ye, X. (2017). Bioactive compounds and antioxidant activity of wolfberry infusion. Scientific reports, 7(1), 40605. [Google Scholar]
  29. Torreggiani, D., Forni, E., Guercilena, I., Maestrelli, A., Bertolo, G., Archer, G. P., ... & Champion, D. (1999). Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices. Food Research International, 32(6), 441-446. [Google Scholar]
  30. Ueda, Y., Apiphuwasukcharoen, N., Tsutsumi, S., Matsuda, Y., Areekul, V., & Yasuda, S. (2019). Optimization of hot-water extraction of dried yacon herbal tea leaves: enhanced antioxidant activities and total phenolic content by response surface methodology. Food Science and Technology Research, 25(1), 131-139. [Google Scholar]
  31. Vidović, B. B., Milinčić, D. D., Marčetić, M. D., Djuriš, J. D., Ilić, T. D., Kostić, A. Ž., & Pešić, M. B. (2022). Health benefits and applications of goji berries in functional food products development: A review. Antioxidants, 11(2), 248. [Google Scholar]
  32. Wawruszak, A., Halasa, M., & Okla, K. (2021). Lycium barbarum (goji berry), human breast cancer, and antioxidant profile. In Cancer (pp. 399-406). Academic Press. [Google Scholar]
  33. Xu, G. H., Chen, J. C., Liu, D. H., Zhang, Y. H., Jiang, P., & Ye, X. Q. (2008). Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. Journal of Food Science, 73(1), C11-C18. [Google Scholar]
  34. Zargar, B., Majeed, D., Ganai, S. A., Mir, S. A., & Dar, B. N. (2018). Effect of different processing parameters on antioxidant activity of tea. Journal of Food Measurement and Characterization, 12, 527-534. [Google Scholar]
  35. Zhao, W. H., & Shi, Y. P. (2022). Comprehensive analysis of phenolic compounds in four varieties of goji berries at different ripening stages by UPLC–MS/MS. Journal of Food Composition and Analysis, 106, 104279. [Google Scholar]