International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2017, Vol. 1(1) 57-67

Karasal bitkilerde DNA barkodlama: Bazı DNA barkod bölgelerinin incelenmesi

Kaan Hürkan

pp. 57 - 67   |  DOI: https://doi.org/10.29329/ijiasr.2017.99.6

Published online: December 29, 2017  |   Number of Views: 559  |  Number of Download: 1134


Abstract

DNA barkodlama son 30 yıldır bitki türlerinin tayininde ve filogenetik çalışmalarında kullanılan ve popülerliği her geçen gün artan etkili bir tekniktir. Bu teknikte çekirdekten veya plastidlerden elde edilen kısa DNA dizileri analiz edilerek canlılar tür seviyesinde ayırt edilmeye çalışılmaktadır. Çekirdek kökenli barkod bölgeleri, plastid kökenli barkod bölgelerine göre çok daha fazla bilgi içermesine rağmen, tek lokus kullanılarak barkodlama yapıldığında, farklı bitki gruplarını karşılaştırabilmek için yeterli bilgiye sahip olamamaktadır. Tüm bitki türlerinde kullanılabilecek tek bir barkod bölgesi henüz mevcut değildir ve bu nedenle farklı barkod bölgelerinin birlikte kullanılması, türlerin ayırt edilebilme gücünü arttırabilmektedir. Kısa DNA dizilerinin moleküler barkod bölgeleri olarak kullanılması günümüzde doyum seviyesine ulaşmış ve yeni teknikler aranmaya başlanmıştır. Tüm bu kısa barkod bölgelerinden çok daha fazla bilgi içeren ve evrensel olabilecek en güçlü barkod bölgesi adayı tüm kloroplast genomudur. Çok hızlı bir şekilde gelişmeye devam eden ve maliyeti düşen yeni nesil dizileme ile elde edilecek genom verileri, bitkilerde evrensel olarak kullanılabilecek barkod bölgelerinden biridir.

Keywords: DNA Barkodlama, moleküler markörler, moleküler taksonomi


How to Cite this Article

APA 6th edition
Hurkan, K. (2017). Karasal bitkilerde DNA barkodlama: Bazı DNA barkod bölgelerinin incelenmesi. International Journal of Innovative Approaches in Science Research, 1(1), 57-67. doi: 10.29329/ijiasr.2017.99.6

Harvard
Hurkan, K. (2017). Karasal bitkilerde DNA barkodlama: Bazı DNA barkod bölgelerinin incelenmesi. International Journal of Innovative Approaches in Science Research, 1(1), pp. 57-67.

Chicago 16th edition
Hurkan, Kaan (2017). "Karasal bitkilerde DNA barkodlama: Bazı DNA barkod bölgelerinin incelenmesi". International Journal of Innovative Approaches in Science Research 1 (1):57-67. doi:10.29329/ijiasr.2017.99.6.

References
  1. Álvarez, I. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29(3), 417–434. doi:10.1016/S1055-7903(03)00208-2 [Google Scholar] [Crossref] 
  2. Bailey, C. (2003). Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution, 29(3), 435–455. doi:10.1016/j.ympev.2003.08.021 [Google Scholar] [Crossref] 
  3. Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S. ve Donoghue, M. J. (1995). The its Region of Nuclear Ribosomal DNA: A Valuable Source of Evidence on Angiosperm Phylogeny. Annals of the Missouri Botanical Garden, 82(2), 247–277. http://www.jstor.org/stable/2399880 adresinden erişildi. [Google Scholar]
  4. Bateman, R. M., Bradshaw, E., Devey, D. S., Glover, B. J., Malmgren, S., SRAMKÓ, G., Rudall, P. J. (2011). Species arguments: clarifying competing concepts of species delimitation in the pseudo-copulatory orchid genus Ophrys. Botanical Journal of the Linnean Society, 165(4), 336–347. doi:10.1111/j.1095-8339.2011.01121.x [Google Scholar] [Crossref] 
  5. Bateman, R. M., James, K. E., Luo, Y. B., Lauri, R. K., Fulcher, T., Cribb, P. J. ve Chase, M. W. (2009). Molecular phylogenetics and morphological reappraisal of the Platanthera clade (Orchidaceae: Orchidinae) prompts expansion of the generic limits of Galearis and Platanthera. Annals of Botany, 104(3), 431–445. doi:10.1093/aob/mcp089 [Google Scholar] [Crossref] 
  6. Blázquez, M. A., Soowal, L. N., Lee, I. ve Weigel, D. (1997). LEAFY expression and flower initiation in Arabidopsis. Development, 124(19), 3835–3844. [Google Scholar]
  7. Chang, C. C., Lin, H. C., Lin, I. P., Chow, T. Y., Chen, H. H., Chen, W. H., Chaw, S. M. (2006). The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): Comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Molecular Biology and Evolution, 23(2), 279–291. doi:10.1093/molbev/msj029 [Google Scholar] [Crossref] 
  8. Chase, M. W., Cowan, R. S., Hollingsworth, P. M., van den Berg, C., Madriñán, S., Petersen, G., … others. (2007). A proposal for a standardised protocol to barcode all land plants. Taxon, 56(2), 295–299. [Google Scholar]
  9. Chase, M. W. ve Fay, M. F. (2009). Barcoding of plants and fungi. Science, 325(5941), 682–683. [Google Scholar]
  10. Chase, M. W., Soltis, D. E., Olmstead, R. G., Morgan, D., Les, D. H., Mishler, B. D., Albert, V. A. (1993). Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL. Annals of the Missouri Botanical Garden, 80(3), 528–580. http://www.jstor.org/stable/2399846 adresinden erişildi. [Google Scholar]
  11. Cuenoud, P., Savolainen, V., Chatrou, L. W., Powell, M., Grayer, R. J. ve Chase, M. W. (2002). Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany, 89(1), 132–144. doi:10.3732/ajb.89.1.132 [Google Scholar] [Crossref] 
  12. Dobzhansky, T. (1940). Speciation as a stage in evolutionary divergence. The American Naturalist, 74(753), 312–321. [Google Scholar]
  13. Dong, W., Liu, J., Yu, J., Wang, L. ve Zhou, S. (2012). Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding. PLoS ONE. doi:10.1371/journal.pone.0035071 [Google Scholar] [Crossref] 
  14. Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., Percy, D. M., Graham, S. W., Barrett, S. C. H., Husband, B. C. (2009). Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Molecular ecology resources, 9 Suppl s1, 130–139. doi:10.1111/j.1755-0998.2009.02652.x [Google Scholar] [Crossref] 
  15. Frohlich, M. W. ve Meyerowitz, E. M. (1997). The Search for Flower Homeotic Gene Homologs in Basal Angiosperms and Gnetales: A Potential New Source of Data on the Evolutionary Origin of Flowers. International Journal of Plant Sciences, 158(6), S131–S142. http://www.jstor.org/stable/2475173 adresinden erişildi. [Google Scholar]
  16. Frohlich, M. W. ve Parker, D. S. (2000). The Mostly Male Theory of Flower Evolutionary Origins: From Genes to Fossils. Systematic Botany, 25(2), 155–170. http://www.jstor.org/stable/2666635 adresinden erişildi. [Google Scholar]
  17. CBOL Plant Working Group (2009). Plant barcode protocol matK and rbcL, 599. [Google Scholar]
  18. Gulyás, G., Sramkó, G., Molnár, V. A., Rudnóy, S., Illyés, Z., Balázs, T., Bratek, Z. (2005). Nuclear ribosomal DNA ITS paralogs as evidence of recent interspecific hybridization in the genus Ophrys (Orchidaceae). Acta Biologica Cracoviensia Series Botanica, 47, 61–67. [Google Scholar]
  19. Hasebe, M., Omori, T., Nakazawa, M., Sano, T., Kato, M. ve Iwatsuki, K. (1994). rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proceedings of the National Academy of Sciences, 91(12), 5730–5734. doi:10.1073/pnas.91.12.5730 [Google Scholar] [Crossref] 
  20. Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. ve Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101(41), 14812–14817. doi:10.1073/pnas.0406166101 [Google Scholar] [Crossref] 
  21. Hilu, K. W. ve Liang, H. (1997). The matK Gene: Sequence Variation and Application in Plant Systematics. American Journal of Botany, 84(6), 830. doi:10.2307/2445819 [Google Scholar] [Crossref] 
  22. Hollingsworth, P. M. (2008). DNA barcoding plants in biodiversity hot spots: progress and outstanding questions. Heredity, 101(1), 1–2. doi:10.1038/hdy.2008.16 [Google Scholar] [Crossref] 
  23. Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., van der Bank, M., Little, D. P. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794–12797. doi:10.1073/pnas.0905845106 [Google Scholar] [Crossref] 
  24. Hollingsworth, P. M., Graham, S. W. ve Little, D. P. (2011). Choosing and using a plant DNA barcode. PLoS ONE, 6(5), e19254. doi:10.1371/journal.pone.0019254 [Google Scholar] [Crossref] 
  25. Huxley-Jones, E., Shaw, J. L. A., Fletcher, C., Parnell, J. ve Watts, P. C. (2012). El Uso de Código de Barras de ADN para Identificar la Composición de Especies de Mariscos de Preparación Rápida. Conservation Biology, 26(2), 367–371. doi:10.1111/j.1523-1739.2011.01813.x [Google Scholar] [Crossref] 
  26. Kress, W. J. ve Erickson, D. L. (2007). A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcLGene Complements the Non-Coding trnH-psbA Spacer Region. PLoS ONE, 2(6), e508. doi:10.1371/journal.pone.0000508 [Google Scholar] [Crossref] 
  27. Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. ve Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8369–8374. http://www.pnas.org/content/102/23/8369.abstract adresinden erişildi. [Google Scholar]
  28. Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Savolainen, V. (2008). DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences, 105(8), 2923–2928. doi:10.1073/pnas.0709936105 [Google Scholar] [Crossref] 
  29. Li, D.-Z., Gao, L.-M., Li, H.-T., Wang, H., Ge, X.-J., Liu, J.-Q., Duan, G.-W. (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences, 108(49), 19641–19646. doi:10.1073/pnas.1104551108 [Google Scholar] [Crossref] 
  30. Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y. ve Chen, S. (2015). Plant DNA barcoding: from gene to genome. Biological Reviews, 90(1), 157–166. doi:10.1111/brv.12104 [Google Scholar] [Crossref] 
  31. Mellerowicz, E. J., Horgan, K., Walden, A., Coker, A. ve Walter, C. (1998). PRFLL - a Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undifferentiated male cone primordia. Planta, 206(4), 619–629. doi:10.1007/s004250050440 [Google Scholar] [Crossref] 
  32. Mildenhall, D. C. (2006). Hypericum pollen determines the presence of burglars at the scene of a crime: An example of forensic palynology. Forensic Science International, 163(3), 231–235. doi:10.1016/j.forsciint.2005.11.028 [Google Scholar] [Crossref] 
  33. Min, X. J. ve Hickey, D. A. (2007). BARCODING: Assessing the effect of varying sequence length on DNA barcoding of fungi. Molecular Ecology Notes, 7(3), 365–373. doi:10.1111/j.1471-8286.2007.01698.x [Google Scholar] [Crossref] 
  34. Newmaster, S. G., Fazekas, A. J., Steeves, R. A. D. ve Janovec, J. (2008). Testing candidate plant barcode regions in the Myristicaceae. Molecular ecology resources, 8(3), 480–490. [Google Scholar]
  35. Oh, S. H. ve Potter, D. (2003). Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Molecular Phylogenetics and Evolution, 29, 203–215. doi:10.1016/S1055-7903(03)00093-9 [Google Scholar] [Crossref] 
  36. Shaw, J., Lickey, E. B., Beck, J. T., Farmer, S. B., Liu, W. S., Miller, J., Small, R. L. (2005). The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 92(1), 142–166. [Google Scholar]
  37. Shaw, J., Lickey, E. B., Schilling, E. E. ve Small, R. L. (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. American Journal of Botany, 94(3), 275–288. [Google Scholar]
  38. Shipunov, A. B., Fay, M. F., Pillon, Y., Bateman, R. M. ve Chase, M. W. (2004). Dactylorhiza (Orchidaceae) in European Russia: Combined molecular and morphological analysis. American Journal of Botany, 91(9), 1419–1426. [Google Scholar]
  39. Sramkó, G. (2008). Sequence variability of the nrITS in the Ophrys fuciflora species-complex of the Mediterranean bee-orchid (Ophrys L.) genus. Department of Botany. University of Debrecen, Debrecen. [Google Scholar]
  40. Sramko, G., Attila, M. V., Hawkins, J. a. ve Bateman, R. M. (2014). Molecular phylogeny and evolutionary history of the Eurasiatic orchid genus Himantoglossum s.l. (Orchidaceae). Annals of Botany, 114(8), 1609–1626. doi:10.1093/aob/mcu179 [Google Scholar] [Crossref] 
  41. Sramkó, G., Gulyás, G. ve Attila Molnár, V. (2011). (Orchidaceae) Revisited: A Study using nrITS and cpIGS Sequences. Annales Botanici Fennici, 48, 97–106. doi:10.5735/085.048.0201 [Google Scholar] [Crossref] 
  42. Sramkó, G., Molnár V., A., Hawkins, J. A. ve Bateman, R. M. (2011). Evolution of the Eurasiatic genus Himantoglossum(Orchideae, Orchidoideae): an integrativephylogenetic approach. In: Abstracts of the XVIII International Botanical Congress içinde (ss. 286–287). Melbourne: Comittee of the XVIII IBC 2011. [Google Scholar]
  43. White, T. J., Bruns, T. D., Lee, S. ve Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. M. A. Innis, D. H. Gelfand, J. J. Sninsky ve T. J. White (Ed.), PCR protocols: A guide to methods and applications içinde (ss. 315–322). San-Diego: Academic Press. [Google Scholar]
  44. Yamaguchi, A., Kawamura, H. ve Horiguchi, T. (2006). A further phylogenetic study of the heterotrophic dinoflagellate genus, Protoperidinium (Dinophyceae) based on small and large subunit ribosomal RNA gene sequences. Phycological Research, 54(4), 317–329. doi:10.1111/j.1440-1835.2006.00438.x [Google Scholar] [Crossref]