International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2022, Vol. 6(4) 169-184

Investigation of the Anti-Cancer Effects of B-asaron and Etoposide in MCF-7 Breast Cancer Cells

Ceylan Ak, Serap Aşgın Yılmaz, Nazlican Kaygusuz & Mehtap Kılıç Eren

pp. 169 - 184   |  DOI: https://doi.org/10.29329/ijiasr.2022.512.1

Published online: December 31, 2022  |   Number of Views: 14  |  Number of Download: 32


Abstract

Currently, the options available for the treatment of various cancers including breast cancer, are associated with several limitations such as severe toxicity, drug resistance, poor prognosis, and high risk of recurrence. Therefore, there appears to be an increasing interest and necessity in investigating various phytochemicals from natural sources for a superior and safer alternative treatment strategy. The bioactive phytochemical alpha (α) and beta (β)-asarone from Acorus calamus is a traditional medicine system that has been shown to have anti-tumor and chemo-inhibitory activities in numerous preclinical studies both in vitro and in vivo. Various experimental studies with human malignant cell lines and animal models have also confirmed the anti-tumor and anti-cancer activities of β-asarone. In this study, we aimed to investigate the anti-cancer effects of β-asarone alone or together with etoposide buy measuring cellular responses such as cell viablity, cell cycle arrest and apoptosis using breast cancer cell line MCF-7 cells. In order to get insight in to the mechanism, we also tested the expression of of NF-κB / p65 activity and the expression of Bcl-2 family member pro-apoptotic Bax protein together with p53 and p21 activities in response to β-asarone alone or together with etoposide treatment.  As a result, it was concluded that the use of β-asarone alone in breast cancer cells is effective in reducing cell viability, but when used together with Etoposide, it does not cause a synergistic effect. Here we suggest that that in particular activation of NF-kB/p65  may be lead resistance to  etoposide treatment.

Keywords: β-asarone, etoposide, MCF-7, MTT, p53, p21, NF-kB/p65


How to Cite this Article

APA 6th edition
Ak, C., Yilmaz, S.A., Kaygusuz, N. & Eren, M.K. (2022). Investigation of the Anti-Cancer Effects of B-asaron and Etoposide in MCF-7 Breast Cancer Cells . International Journal of Innovative Approaches in Science Research, 6(4), 169-184. doi: 10.29329/ijiasr.2022.512.1

Harvard
Ak, C., Yilmaz, S., Kaygusuz, N. and Eren, M. (2022). Investigation of the Anti-Cancer Effects of B-asaron and Etoposide in MCF-7 Breast Cancer Cells . International Journal of Innovative Approaches in Science Research, 6(4), pp. 169-184.

Chicago 16th edition
Ak, Ceylan, Serap Asgin Yilmaz, Nazlican Kaygusuz and Mehtap Kilic Eren (2022). "Investigation of the Anti-Cancer Effects of B-asaron and Etoposide in MCF-7 Breast Cancer Cells ". International Journal of Innovative Approaches in Science Research 6 (4):169-184. doi:10.29329/ijiasr.2022.512.1.

References
  1. Alpsoy, A., Yasa, S., & Gündüz, U. (2014). Etoposide resistance in MCF-7 breast cancer cell line is marked by multiple mechanisms. Biomed Pharmacother, 68(3), 351-355. doi:10.1016/j.biopha.2013.09.007 [Google Scholar] [Crossref] 
  2. Chen, M., Zhuang, Y. W., Wu, C. E., Peng, H. Y., Qian, J., & Zhou, J. Y. (2021). β-asarone suppresses HCT116 colon cancer cell proliferation and liver metastasis in part by activating the innate immune system. Oncol Lett, 21(6), 435. doi:10.3892/ol.2021.12696 [Google Scholar] [Crossref] 
  3. Chellian, R., Pandy, V., & Mohamed, Z. (2017). Pharmacology and toxicology of α- and β-Asarone: A review of preclinical evidence. Phytomedicine : international journal of phytotherapy and phytopharmacology, 32, 41–58. https://doi.org/10.1016/j.phymed.2017.04.003 [Google Scholar] [Crossref] 
  4. Das, B. K., Knott, R. M., & Gadad, P. C. (2021). Metformin and asarone inhibit HepG2 cell proliferation in a high glucose environment by regulating AMPK and Akt signaling pathway. Future Journal of Pharmaceutical Sciences, 7(1), 43. doi:10.1186/s43094-021-00193-8 [Google Scholar] [Crossref] 
  5. Das, B. K., Swamy, A. V., Koti, B. C., & Gadad, P. C. (2019). Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon, 5(5), e01585. doi:10.1016/j.heliyon.2019.e01585 [Google Scholar] [Crossref] 
  6. Eren, M.K., Kartal, N.B., Pilevneli, H. 2021. "Oncogenic WIP1 phosphatase attenuates the DNA damage response and sensitizes p53 mutant Jurkat cells to apoptosis". 21(6), 479. [Google Scholar]
  7. Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., . . . Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. doi:10.1038/s41572-019-0111-2 [Google Scholar] [Crossref] 
  8. Gunduz, M., & Gunduz, E. (Eds.). (2011). Breast Cancer: Focusing Tumor Microenvironment, Stem Cells and Metastasis. BoD–Books on Demand. [Google Scholar]
  9. Godwin, P., Baird, A. M., Heavey, S., Barr, M. P., O'Byrne, K. J., & Gately, K. (2013). Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol, 3, 120. doi:10.3389/fonc.2013.00120 [Google Scholar] [Crossref] 
  10. Kilic-Eren, M., Boylu, T., & Tabor, V. (2013). Targeting PI3K/Akt represses Hypoxia inducible factor-1α activation and sensitizes Rhabdomyosarcoma and Ewing's sarcoma cells for apoptosis. Cancer Cell Int, 13, 36. doi:10.1186/1475-2867-13-36 [Google Scholar] [Crossref] 
  11. Kilic, M. Schmitt, CA. 2008. Tumor senescence in cancer treatment. Part 6. Chapter III. "Exploiting drug induced senescence in transgenic mouse models" BEYOND APOPTOSIS: CELLULAR OUTCOMES OF CANCER THERAPY,. in Book " Tumor senescence in cancer treatment. Part 6. Chapter III. "Exploiting drug induced senescence in transgenic mouse models" BEYOND APOPTOSIS: CELLULAR OUTCOMES OF CANCER THERAPY," p. 273. Informa Health Care USA, New York. [Google Scholar]
  12. Li, L., Yang, Y., Wu, M., Yu, Z., Wang, C., Dou, G., He, H., Wang, H., Yang, N., Qi, H., & Xu, X. (2018). β-Asarone Induces Apoptosis and Cell Cycle Arrest of Human Glioma U251 Cells via Suppression of HnRNP A2/B1-Mediated Pathway In Vitro and In Vivo. Molecules (Basel, Switzerland), 23(5), 1072. https://doi.org/10.3390/molecules 23051072 [Google Scholar] [Crossref] 
  13. Lim, H. W., Kumar, H., Kim, B. W., More, S. V., Kim, I. W., Park, J. I., Park, S. Y., Kim, S. K., & Choi, D. K. (2014). β-Asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates pro-inflammatory mediators by inhibiting NF-κB signaling and the JNK pathway in LPS activated BV-2 microglia cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 72, 265–272. https://doi.org/10.1016/j.fct.2014.07.018 [Google Scholar] [Crossref] 
  14. Liu, L., Wang, J., Shi, L., Zhang, W., Du, X., Wang, Z., & Zhang, Y. (2013). β-Asarone induces senescence in colorectal cancer cells by inducing lamin B1 expression. Phytomedicine, 20(6), 512-520. [Google Scholar]
  15. Lv, L. N., Wang, X. C., Tao, L. J., Li, H. W., Li, S. Y., & Zheng, F. M. (2019). β-Asarone increases doxorubicin sensitivity by suppressing NF-κB signaling and abolishes doxorubicin-induced enrichment of stem-like population by destabilizing Bmi1. Cancer cell international, 19, 153. https://doi.org/10.1186/s12935-019-0873-3 [Google Scholar] [Crossref] 
  16. Pilevneli, H., & Kilic-Eren, M. (2021). Targeting oncogenic WIP1 phosphatase sensitizes hypoxic breast cancer cells to doxorubicin induced apoptosis via activation of p53-p21 axis. Gene Reports, 23, 101144. [Google Scholar]
  17. Qi, H., Chen, L., Ning, L., Ma, H., Jiang, Z., Fu, Y., & Li, L. (2015). Proteomic analysis of β-asarone induced cytotoxicity in human glioblastoma U251 cells. Journal of pharmaceutical and biomedical analysis, 115, 292-299. [Google Scholar]
  18. Shenvi, S., Diwakar, L., & Reddy, G. C. (2014). Nitro Derivatives of Naturally Occurring β -Asarone and Their Anticancer Activity. Int J Med Chem, 2014, 835485. doi:10.1155/2014/835485 [Google Scholar] [Crossref] 
  19. Smina, C. S., Lalitha, P., Sharma, S. C., & Nagabhushana, H. (2021). Screening of anti-cancer activity of reduced graphene oxide biogenically synthesized against human breast cancer MCF-7 cell lines. Applied Nanoscience, 11(4), 1093-1105. doi:10.1007/s13204-021-01696-9 [Google Scholar] [Crossref] 
  20. Sreejaya, S. B., & Santhy, K. S. (2013). Cytotoxic properties of Acorus calamus in MCF -7 breast cancer cells. [Google Scholar]
  21. Stegmüller, S., Schrenk, D., & Cartus, A. T. (2018). Formation and fate of DNA adducts of alpha- and beta-asarone in rat hepatocytes. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 116(Pt B), 138–146. https://doi.org/10.1016/j.fct.2018.04.025 [Google Scholar] [Crossref] 
  22. Tang, Y., Wang, Y., Kiani, M. F., & Wang, B. (2016). Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer. Clin Breast Cancer, 16(5), 335-343. doi:10.1016/j.clbc.2016.05.012 [Google Scholar] [Crossref] 
  23. Venkatadri, R., Guha, G., Kumar, R., & Lazar, M. (2009). Evaluation of Cytotoxic Potential of Acorus calamus Rhizome. Ethnobotanical Leaflets, 13. [Google Scholar]
  24. Wang, N., Zhang, Q., Ning, B., Luo, L., & Fang, Y. (2017). β-Asarone promotes Temozolomide’s entry into glioma cells and decreases the expression of P-glycoprotein and MDR1. Biomedicine & Pharmacotherapy, 90, 368-374. [Google Scholar]
  25. Wang, T. L., Ouyang, C. S., & Lin, L. Z. (2018). β-Asarone suppresses Wnt/β-catenin signaling to reduce viability, inhibit migration/invasion/adhesion and induce mitochondria-related apoptosis in lung cancer cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 106, 821–830. https://doi.org/10.1016/j.biopha.2018.07.009 [Google Scholar] [Crossref] 
  26. Wu, J., Zhang, X.-X., Sun, Q.-M., Chen, M., Liu, S. L., Zhang, X., . . . Zou, X. (2015). β-asarone inhibits gastric cancer cell proliferation. Oncol Rep, 34(6), 3043-3050. doi:10.3892/or.2015.4316 [Google Scholar] [Crossref] 
  27. Zou, X., Liu, S.-L., Zhou, J.-Y., Wu, J., Ling, B.-F., & Wang, R.-P. (2012, October 31). Beta-asarone Induces LoVo Colon Cancer Cell Apoptosis by Up-regulation of Caspases through a Mitochondrial Pathway in vitro and in vivo. Asian Pacific Journal of Cancer Prevention. Asian Pacific Organization for Cancer Prevention. https://doi.org/10.7314/apjcp.2012.13.10.5291 [Google Scholar] [Crossref]