- Abedin, MJ. Wang D. McDonnell, MA. Lehmann U. Kelekar A. 2007, ‘Autophagy delays apoptotic death in breast cancer cells following DNA damage’. Cell Death Differ, 500-510. [Google Scholar]
- Amaravadi, R. Kimmelman, AC. White E. 2016, ‘Recent insights into the function of autophagy in cancer’. Genes Dev, 1913-30. [Google Scholar]
- Bartek, J. Lukas, J. Bartkova, J. 2007. "DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'". Cell cycle 6: 2344-2347. [Google Scholar]
- Bartek, J. Lukas, J. 2007. "DNA damage checkpoints: from initiation to recovery or adaptation". Current opinion in cell biology 19: 238-245. [Google Scholar]
- Bartkova, J. Rezaei, N. Liontos, M. Karakaidos, P. Kletsas, D. Issaeva, N. Vassiliou, LV. Kolettas, E. Niforou, K. Zoumpourlis, VC. et al. 2006. "Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints". Nature 444: 633-637. [Google Scholar]
- Blackford A N, Jackson S P. 2017.‘ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response’ Molecular Cell Volume 66, Issue 6, 15 June 2017, Pages 801-817 [Google Scholar]
- Budanov, AV. Karin, M. 2008, ‘p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling’. Cell, 451–460. [Google Scholar]
- Broustas C G, H.B. Lieberman H B. 2014. ‘DNA Damage Response Genes and the Development of Cancer Metastasis’ Radiat Res (2014) 181 (2): 111–130. [Google Scholar]
- Bulavin, DV. Demidov, ON. Saito, S. Kauraniemi, P. Phillips, C. Amundson, SA. Ambrosino, C. Sauter, G. Nebreda, AR. Anderson, CW. et al. 2002. "Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity". Nature genetics 31: 210-215. [Google Scholar]
- Castellino, RC. De Bortoli, M. Lu, X. Moon, SH. Nguyen, TA. Shepard, MA. Rao, PH. Donehower, LA. Kim, JY. 2008. "Medulloblastomas overexpress the p53-inactivating oncogene WIP1/PPM1D". Journal of neuro-oncology 86: 245-256. [Google Scholar]
- Chude, CI. Amaravadi, RK. 2017, ‘Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors’. Int J Mol Sci, 18(6): 1279. [Google Scholar]
- Coppé, JP. Desprez, PY. Krtolica, A. Campis, j. 2014, ‘The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression’. Annu Rev Pathol.5: 99–118. [Google Scholar]
- Crighton, D. Wilkinson S, O'Prey J. Syed ,N. Smith, P. Harrison, PR. Gasco, M. Garrone, O. Crook, T. Ryan, KM. 2006,’ DRAM, a p53-induced modulator of autophagy, is critical for apoptosis’. Cell,(1):121-34. [Google Scholar]
- Czarny, P. Pawlowska, E. Warzecha, JB. Kaarniranta, K. Blasiak, J. 2015, ‘Autophagy in DNA Damage Response’. Int. J. Mol. Sci., 2641-2662. [Google Scholar]
- Dikic, I. Elazar, Z. 2018, ‘Mechanism and medical implications of mammalian autophagy’. Nature Reviews Molecular Cell Biology, 349–364. [Google Scholar]
- Eisenberg-Lerner, A. Kimchi, A. 2012, ‘PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk’. Cell Death Differ, 788–797. [Google Scholar]
- El-Awady, R. A., Semreen, M. H., Saber-Ayad, M. M., Cyprian, F., Menon, V., & Al-Tel, T. H. (2016). Modulation of DNA damage response and induction of apoptosis mediates synergism between doxorubicin and a new imidazopyridine derivative in breast and lung cancer cells. DNA repair, 37, 1-11. [Google Scholar]
- Eliopoulos, AG. Havaki, S. Gorgoulisr, VG. 2016, ‘DNA Damage Response and Autophagy: A Meaningful Partnership’. Front Genet, 7: 204. [Google Scholar]
- Feng, Y. Zhiyuan, Ding. Klionsky, D. 2014, ‘The machinery of macroautophagy ‘.Cell Research, 24–41. [Google Scholar]
- Feng, Z. Hu, W. Stanchina, E. Teresky, AK. Jin, S. Lowe, S. Levine, AJ. 2007, ‘The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways’. Cancer Res, 3043–3053. [Google Scholar]
- Fuku, T. Semba, S. Yutori, H. Yokozaki, H. 2007. "Increased wild-type p53-induced phosphatase 1 (Wip1 or PPM1D) expression correlated with downregulation of checkpoint kinase 2 in human gastric carcinoma". Pathology international 57: 566-571. [Google Scholar]
- Guo, J. Chen, H. Mathew, R. Fan, J. Strohecker, A. Uzunbas, G. Kamphorst, J. Chen, G. Lemons, J. Karantza, V. Hilary, A. et al. 2011, ‘Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis’. Genes Dev, 717-29. [Google Scholar]
- Halazonetis, TD. Gorgoulis, VG. Bartek, J. 2008, ‘An oncogene-induced DNA damage model for cancer development’. 319(5868):1352-5. [Google Scholar]
- Hosoya N, Miyagawa K. 2014. ‘Targeting DNA damage response in cancer therapy’ Cancer Sci 105 (2014) 370–388 [Google Scholar]
- Hu Feng W., Modica Z., Klimstra I., Song DS., Allen L., Brennan PJ., Levine MF., Tang AJ., LH. 2010. "Gene Amplifications in Well-Differentiated Pancreatic Neuroendocrine Tumors Inactivate the p53 Pathway". Genes & cancer 1: 360-368. [Google Scholar]
- Kang, C. Xu, Q. Martin, TD. Li, MZ. Demaria, M. Aron, L. Lu, T. Yankner BA. Campisi J. Elledge SJ. 2015, ‘The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4’. Science, 349. [Google Scholar]
- [Google Scholar]
- Katayama, M. Kawaguchi, T. Berger, MS. Pieper, RO. 2007, ‘DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells’. Cell Death Differ, 548-558. [Google Scholar]
- Kilic, M. Schmitt, CA. 2008. Tumor senescence in cancer treatment. Part 6. Chapter III. "Exploiting drug induced senescence in transgenic mouse models" BEYOND APOPTOSIS: CELLULAR OUTCOMES OF CANCER THERAPY,. in Book " Tumor senescence in cancer treatment. Part 6. Chapter III. "Exploiting drug induced senescence in transgenic mouse models" BEYOND APOPTOSIS: CELLULAR OUTCOMES OF CANCER THERAPY," p. 273. Informa Health Care USA, New York. [Google Scholar]
- Kilic-Eren, M. Boylu, T. Tabor, V. 2013. "Targeting PI3K/Akt represses Hypoxia inducible factor-1alpha activation and sensitizes Rhabdomyosarcoma and Ewing's sarcoma cells for apoptosis". Cancer cell international 13: 36. [Google Scholar]
- Kleiblova, P. Shaltiel, A. Benada, J. Sevcik, J. Pechackova, S. Pohlreich, P. Voest, EE. Dundr, P. Bartek, J. Kleibl, Z. et al. 2013. "Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint". The Journal of cell biology 201: 511-521. [Google Scholar]
- Le Guezennec, X. Brichkina, A. Huang, YF. Kostromina, E. Han, W. Bulavin, DV. 2012, ‘Wip1-dependent regulation of autophagy, obesity, and atherosclerosis’. Cell Metab, 16(1):68-8. [Google Scholar]
- [Google Scholar]
- Levy Mulcahy, JM. Towers, CG. Thorburn, A.2017, ‘Targeting Autophagy in Cancer’, Nat Rev Cancer, 528–542. [Google Scholar]
- Liang, Y., Lin, S. Y., Brunicardi, F. C., Goss, J., & Li, K. (2009). DNA damage response pathways in tumor suppression and cancer treatment. World journal of surgery, 33(4), 661-666. [Google Scholar]
- Lin, W. Yuan, N. Wang, Z. Cao, Y. Fang, Y. Li, X. Xu, F. Song, L. Wang, J. Zhang, H. Yan, L. Xu, L. Zhang, X. Zhang, S. 2015, ‘Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury’. Sci Rep, 5: 12362. [Google Scholar]
- [Google Scholar]
- Lowe, J. Cha, H. Lee, MO. Mazur, SJ. Appella, E. Fornace, AJ. 2012. "Regulation of the Wip1 phosphatase and its effects on the stress response". Frontiers in bioscience 17: 1480-1498. [Google Scholar]
- [Google Scholar]
- Lukas, J. Lukas, C. Bartek, J. 2011,’ More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance’. Nat Cell Biol., 13(10):1161-9 [Google Scholar]
- Ma, XH. Piao, S. Wang, D. McAfee, QW. Nathanson, KL. Lum, JJ. Li, LZ. Amaravadi, RK. 2011, ‘Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma’. Clin Cancer Res, 3478–3489. [Google Scholar]
- Marinković, M. Šprung, M. Buljubašić, Maja. Novak, I. 2018, ‘Autophagy Modulation in Cancer: Current Knowledge of Action and Therapy’. Oxidative Medicine and Cellular Longevity, doi.org/10.1155/2018/8023821. [Google Scholar]
- [Google Scholar]
- Medema, RH. Macurek, L. 2012. "Checkpoint control and cancer". Oncogene 31: 2601-2613. [Google Scholar]
- Mirzayans, R. Andrais, B. Scott, A. Wang, YW. Murray, D. 2013. "Ionizing radiation-induced responses in human cells with differing TP53 status". International journal of molecular sciences 14: 22409-22435. [Google Scholar]
- Morselli, E. Galluzzi, L. Kepp, O. Vicencio, J.M. Criollo, A. Maiuri, M.C. Kroemer, 2009, G. ‘Anti- and pro-tumor functions of autophagy’. Biochim. Biophys. Acta, 1524–1532. [Google Scholar]
- Mosieniak, G. Sliwinska, M.A. Alster, O. Strzeszewska, A. Sunderland, P. Piechota, M. Was, H. Sikora, E. 2015, ‘Polyploidy Formation in Doxorubicin-Treated Cancer Cells Can Favor Escape from Senescence’. Neoplasia, 17, 882–893. [Google Scholar]
- [Google Scholar]
- Mosieniak, G., Sliwinska, M. A., Przybylska, D., Grabowska, W., Sunderland, P., Bielak, A., & Sikora, E. (2016). Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype. The International Journal of Biochemistry & Cell Biology, 74, 33-43. [Google Scholar]
- Olcina, M. M., Grand, R. J., & Hammond, E. M. (2014). ATM activation in hypoxia-causes and consequences. Molecular & cellular oncology, 1(1), e29903. [Google Scholar]
- Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, Kroemer G. Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol. 2013 Oct;23(5):310-22. [Google Scholar]
- Rauta, J. Alarmo, EL. Kauraniemi, P. Karhu, R. Kuukasjarvi, T. Kallioniemi, A. 2006. "The serine-threonine protein phosphatase PPM1D is frequently activated through amplification in aggressive primary breast tumours". Breast cancer research and treatment 95: 257-263. [Google Scholar]
- Rieber, M. Rieber, MS. 2008, ‘Sensitization to radiation-induced DNA damage accelerates loss of bcl-2 and increases apoptosis and autophagy’. Cancer Biol Ther, 1561-1566. [Google Scholar]
- [Google Scholar]
- Rodríguez-Vargas, JM. Ruiz-Magaña, MJ. Ruiz-Ruiz, C. Majuelos-Melguizo, J. Peralta-Leal, A. Rodríguez, MI. Muñoz-Gámez, JA. de Almodóvar, MR. Siles, E. Rivas, AL. Jäättela, M. Oliver, FJ. 2012, ‘ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy’. Cell Res, 1181–1198. [Google Scholar]
- Roos, WP.Thomas, AD. Kaina, B, 2016,’ DNA damage and the balance between survival and death in cancer biology’. Nat Rev Cancer.,16(1):20-33. [Google Scholar]
- Saito-Ohara, F. Imoto I. Inoue, J. Hosoi, H. Nakagawara, A. Sugimoto, T. Inazawa J. 2003. "PPM1D is a potential target for 17q gain in neuroblastoma". Cancer research 63: 1876-1883. [Google Scholar]
- Santana-Codina N, J. D. Mancias J D, Kimmelman A C, 2017. ‘The Role of Autophagy in Cancer’ Annual Review of Cancer Biology’ Vol. 1:19-39 [Google Scholar]
- Shimada M. Nakanishi M. 2013. Response to DNA damage: why do we need to focus on protein phosphatases?’ Front. Oncol., 31 January 2013 [Google Scholar]
- Singh, K. Matsuyama, S. Drazba, JA. Almasan, A. 2012, ‘Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress’. Autophagy, 236–51. [Google Scholar]
- Song, JY. Ryu, SH. Cho, YM. Kim, YS. Lee, BM. Lee, SW. Choi, J. 2013. "Wip1 suppresses apoptotic cell death through direct dephosphorylation of BAX in response to gamma-radiation". Cell death & disease 4: e744. [Google Scholar]
- Stambolic, V. MacPherson, D. Sas, D. Lin, Y. Snow, B. Jang, Y. Benchimol, S. Mak, TW. 2001, ‘Regulation of PTEN transcription by p53’. Mol. Cell, 317–325. [Google Scholar]
- [Google Scholar]
- Tan, DS. Lambros, MB. Rayter, S. Natrajan, R. Vatcheva, R. Gao, Q. Marchio, C. Geyer, FC. Savage, K. Parry, S. et al. 2009. "PPM1D is a potential therapeutic target in ovarian clear cell carcinomas". Clinical cancer research: an official journal of the American Association for Cancer Research 15: 2269-2280. [Google Scholar]
- Torii, S. Yoshida, T. Arakawa, S. Honda, S. Nakanishi, A. Shimizu, S. 2016, ‘Identification of PPM1D as an essential Ulk1 phosphatase for genotoxic stress-induced autophagy’. EMBO Rep, 1552-1564. [Google Scholar]
- White, E. 2015, ‘The role for autophagy in cancer’. J Clin Invest, 42-46. [Google Scholar]
- Wong PM, Feng Y, Wang J, Shi R, Jiang X. 2015, Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A Nat Commun. 27;6:8048.. [Google Scholar]
- Yang, S. Wang, X. Contino, G. Liesa, M. Sahin, E. Ying, H. Bause, A. Li, Y. Stommel, JM. Dell'antonio, G. Mautner, J. Tonon, G. Haigis, M. Shirihai, OS. Doglioni, C. Bardeesy, N. Kimmelman, AC. 2011, ‘Pancreatic cancers require autophagy for tumor growth’, Genes Dev, 717–729. [Google Scholar]
- Yu, E. Ahn, YS. Jang, SJ. Kim, MJ. Yoon, HS. Gong, G. Choi, J. 2007. "Overexpression of the wip1 gene abrogates the p38 MAPK/p53/Wip1 pathway and silences p16 expression in human breast cancers". Breast cancer research and treatment 101: 269-278. [Google Scholar]
|