International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Review article | International Journal of Innovative Approaches in Science Research 2020, Vol. 4(4) 141-152

Bioactive Phytochemical Compounds between Gut Microbiota, Cancer and Physiological Dysfunction

Katia Djenadı, Hassan Khechfoud, Monia Azouaou, Mustapha Bachır Bey & Djamel Edine Katı

pp. 141 - 152   |  DOI:

Published online: December 22, 2020  |   Number of Views: 9  |  Number of Download: 35


Gut microbiota mainly dominated by bacteria attribute to the divisions Bacteroidetes and Firmicutes, plays an important role in host physiology and influences several relevant functions. Bacteria diversity in gut microbiota driven by dietary factors and influences metabolic and immune functions of the host’s physiology. Imbalance in the gut microbiota, named dysbiosis, can lead to the development of various diseases, such as cancer and even psychological dysfunction. Therefore, Gut microbiota is an appropriate target for nutritional interventions to improve health. These facts motivate us to highlight on the influence of phytochemicals on gut microbiota and look for an alternative treatment of inflammatory diseases by using nutritional supplements. Among dietaries phytochemicals elements we found several chemical compounds such as polyphenols and their derivatives, carotenoids, and thiosulfates. Polyphenols as the largest group can gather four main groups: flavonoids, phenolic acids, stilbenoids, and lignans. These compounds, which constitute a natural reservoir, have proved their efficiency as antioxidant and anti-inflammatory molecules. From this point, we may classify these compounds as an alternative molecule to treat or prevent the development of cancer or even psychological dysfunction.

Keywords: Gut microbiota; dietaries phytochemicals; polyphenols; cancer; psychological dysfunction.

How to Cite this Article?

APA 6th edition
Djenadi, K., Khechfoud, H., Azouaou, M., Bey, M.B. & Kati, D.E. (2020). Bioactive Phytochemical Compounds between Gut Microbiota, Cancer and Physiological Dysfunction . International Journal of Innovative Approaches in Science Research, 4(4), 141-152. doi: 10.29329/ijiasr.2020.312.5

Djenadi, K., Khechfoud, H., Azouaou, M., Bey, M. and Kati, D. (2020). Bioactive Phytochemical Compounds between Gut Microbiota, Cancer and Physiological Dysfunction . International Journal of Innovative Approaches in Science Research, 4(4), pp. 141-152.

Chicago 16th edition
Djenadi, Katia, Hassan Khechfoud, Monia Azouaou, Mustapha Bachir Bey and Djamel Edine Kati (2020). "Bioactive Phytochemical Compounds between Gut Microbiota, Cancer and Physiological Dysfunction ". International Journal of Innovative Approaches in Science Research 4 (4):141-152. doi:10.29329/ijiasr.2020.312.5.

  1. Akao Teruaki, Kanaoka Matao and Kobashi Kyoichi. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria in rat plasma after oral administration (measurement of compound K by enzyme immunoassay. Biol pharm bull. 1998. 21(3)245-249; [Google Scholar]
  2. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al. MetaHIT Consortium Enterotypes of the human gut microbiome. Nature. 2011;473:174–180 [Google Scholar]
  3. Bae Eun Ah, Park Sun young and Kim Dong Hyun. Constitutive Beta Glucosidases hydrolysing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol pharm bull 2000. 23(12)1481-1485; [Google Scholar]
  4.  Biagi Elena, Candela Marco, Fairweather-Tait Susan, Franceschi Claudio, Patrizia Brigidi. Aging of the human metaorganism: The microbial counterpart. Age (Dordr). 2012; 34:247–267. [Google Scholar]
  5. Bozkurt and Kara. A new treatment for ulcerative colitis: Intracolonic Bifidobacterium and xyloglucan application. European Journal of Inflammation. 2020. 18: 1–7. doi/10.1177/2058739220942626. [Google Scholar]
  6. Bozkurt H. S, Quigley E. MM and Kara B. Bifidobacterium animalis subspecies lactis engineered to produce mycosporin-like amino acids in colorectal cancer prevention. SAGE Open Medicine. 2019. 7: 1–5. doi/10.1177/2050312119825784 [Google Scholar]
  7. Bozkurt HS and  Kara B. Can Fortified Bifidobacterium with Mycosporin-like Amino Acid be a New Insight for Neurological Diseases’Treatment?. Autism-Open Access. 2017. 7: 219.doi:10.4172/2165-7890.1000219. [Google Scholar] [Crossref] 
  8. Bozkurt HS and  Quigley E.M. M. Bifidobacteria and Mucosal-Associated Invariant T (MAIT) Cells: A New Approach to Colorectal Cancer Prevention? Gastrointest. Disord. 2019, 1, 266–272; doi:10.3390/gidisord1020022. [Google Scholar] [Crossref] 
  9. Burapan, S.; Kim, M.; Han, J. Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota. J. Agric. Food Chem. 2017, 65, 3305–3310. [Google Scholar]
  10. Calvo-Barreiro Laura, Eixarch Herena, Montalban Xavier, Espejo Carmen Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmun Rev, 2018;17(2):165-174. doi: 10.1016/j.autrev.2017.11.019. [Google Scholar] [Crossref] 
  11. Caporaso, J.G., Lauber, C.L., Costello, E.K., Berg-Lyons, D., Gonzalez, A., Stombaugh, J., Knights, D., Gajer, P., Ravel, J., Fierer, N., et al. Moving pictures of the human microbiome. Genome Biol. 2011.12, R50. [Google Scholar]
  12.  Chen Man-Yun, Li Shao, Wei Zhanga,, Chong-Zhi Wangd, Hong-Hao Zhoua,b,Wei-Hua Huanga,, Chun-Su Yuan. Metabolic analysis of Panax notoginseng saponins with gutmicrobiota-mediated biotransformation by HPLC-DAD-Q-TOF-MS/MS . Journal of Pharmaceutical and Biomedical Analysis. 2018.150. 199–207 [Google Scholar]
  13. Chu H., Mazmanian S. K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 2013. 14, 668–675. 10.1038/ni.2635 [Google Scholar]
  14. Costello Elizabeth K., Lauber Christian L., Hamady Micah, Noah Fierer, Jeffrey I. Gordon and Rob Knight. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science. 2009. 18; 326(5960): 1694–1697. [Google Scholar]
  15. Creely S.J., McTernan P.G., Kusminski C.M., Fisher M., Da Silva N.F., Khanolkar M., Evans M., Harte A.L., Kumar S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2007;292:E740–E747. [Google Scholar]
  16. D. Świątecka, A. Narbad, P. K. Ridgway et  H. Kostyra. The study on the impact of glycated pea proteins on human intestinal bacteria. International Journal of Food Microbiology., 2011, 145, 267–272, , doi: 10.1016/j.ijfoodmicro.2011.01.002. [Google Scholar] [Crossref] 
  17. Di Meo Francesco, Margarucci Sabrina, Galderisi Umberto, Crispi Stefania , and Peluso Gianfranco.Curcumin, Gut Microbiota, and Neuroprotection. Nutrients 2019, 11, 2426; doi:10.3390/nu11102426. [Google Scholar] [Crossref] 
  18. Hassaninasab, A.; Hashimoto, Y.; Tomita-Yokotani, K.; Kobayashi, M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 6615–6620. [Google Scholar]
  19. Hoehle, S.I.; Pfeier, E.; Sólyom, A.M.; Metzler, M. Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J. Agric. Food Chem. 2006, 54, 756–764. [Google Scholar]
  20. J. C. Clemente, L. K. Ursell, L. W. Parfrey, et R. Knight, « The Impact of the Gut Microbiota on Human Health: An Integrative View », Cell, vol. 2012, 148, no 6, p. 1258‑1270, doi: 10.1016/j.cell.2012.01.035. [Google Scholar] [Crossref] 
  21. Jazayeri, S.D. Survival of Bifidobacteria and other selected intestinal bacteria in TPY medium supplemented with Curcumin as assessed in vitro. Int. J. Probiotics Prebiotics 2009, 4, 15–22. [Google Scholar]
  22. Johansson Cecilia, Kelsall Brian L. Phenotype and function of intestinal dendritic cells. Seminars in Immunology 2005. 17 . 284–294 [Google Scholar]
  23. Jung Il-Hoon, Jeong Hoon Lee, Yang-Jin Hyun, and Dong-Hyun Kim Metabolism of Ginsenoside Rb1 by Human Intestinal Microflora and Cloning of Its Metabolizing β-D-Glucosidase from Bifidobacterium longum H-1. Biol. Pharm. Bull. 2012. 35(4) 573–581. [Google Scholar]
  24. Koenig, J.E., Spor, A., Scalfone, N., Fricker, A.D., Stombaugh, J., Knight, R., Angenent, L.T., and Ley, R.E. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108 (Suppl 1), 2011. 4578–4585. Published online July 28, 2010. 10.1073/pnas.1000081107. [Google Scholar]
  25.  Lakshminarayanan L B., C. Stanton, P.W. O’Toole, R.P. Ross. Compositional dynamics of the human intestinal microbiota with aging: implications for health. J. Nutrit. Health Aging, 2014, 18, p. 773. [Google Scholar]
  26. Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R., and Gordon, J.I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 2008. 6, 776–788. [Google Scholar]
  27. Metzler, M.; Pfeier, E.; Schulz, S.I.; Dempe, J. Curcumin uptake and metabolism. Biofactors 2013, 39, 14–20. [Google Scholar]
  28. Nagpala Ravinder, Mainalia Rabina, Shokouh Ahmadia,b, Shaohua Wanga, Ria Singha, Kylie Kavanaghc, Dalane W. Kitzmand, Almagul Kushugulovae, Francesco Marottaf and Hariom Yadava, Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging. 2018. 4. 267–285. DOI 10.3233/NHA-170030 [Google Scholar]
  29. Nakazawa Takahiro, Ohsawa Keisuke. Metabolism of [6]-gingerol in rats. Life Sci 2002. 22;70(18):2165-75. doi: 10.1016/s0024-3205(01)01551-x. [Google Scholar] [Crossref] 
  30. Nicholson Jeremy K, Holmes Elaine, Kinross James, Remy Burcelin, Glenn Gibson, Wei Jia, Sven Pettersson Host-Gut Microbiota Metabolic Interactions. Science 2012; 336, 6086.1262-1267. DOI: 10.1126/science.1223813. [Google Scholar]
  31. R. K. Singh et al., Influence of diet on the gut microbiome and implications for human health. J Transl Med., 2017, 15:73, , doi: 10.1186/s12967-017-1175-y. [Google Scholar] [Crossref] 
  32. Reyes, A., Haynes, M., Hanson, N., Angly, F.E., Heath, A.C., Rohwer, F., and Gordon, J.I. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 2010.466: 334–338. [Google Scholar]
  33. Scanlan, P.D., and Marchesi, J.R. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J.2008. 2, 1183–1193. [Google Scholar]
  34. Scarpellini E, G. Ianiro, F. Attili, C. Bassanelli, A. De Santis, A. Gasbarrini. The human gut microbiota and virome: potential therapeutic implications. Dig. Liver Dis, 2015.  47:12,1007-1012. [Google Scholar]
  35. Serraa Diana, Almeidaa Leonor M., Dinis Teresa C.P., Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis. Trends in Food Science & Technology  2018. 78 224–233. [Google Scholar]
  36. Tan, S.; Rupasinghe, T.W.; Tull, D.L.; Boughton, B.; Oliver, C.; McSweeny, C.; Gras, S.L.; Augustin, M.A. Degradation of curcuminoids by in vitro pure culture fermentation. J. Agric. Food Chem. 2014, 62, 11005–11015. [Google Scholar]
  37. Tang W.H. Wilson, Kitai Takeshi and Hazen Stanley L. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017. 31; 120(7): 1183–1196. [Google Scholar]
  38. Tao Jin-hua, Min Zhao, Shu Jiang, Xue-lian Pu, Xiao-yan Wei. Comparative metabolism of two major compounds in Fructus Corni extracts by gut microflora from normal and chronic nephropathy rats in vitro by UPLC-Q-TOF/MS. Journal of Chromatography B 2018. 1073. 170–176. [Google Scholar]
  39. Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008; 3:213–23. doi: 10.1016/j.chom.2008.02.015. [Google Scholar] [Crossref] 
  40. Vaishampayan Parag A 1, Kuehl Jennifer V, Froula Jeffrey L, Morgan Jenna L, Ochman Howard, Francino M Pilar. Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol. 2010. 6;2:53-66.doi: 10.1093/gbe/evp057. [Google Scholar] [Crossref] 
  41. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. [Google Scholar]
  42. Xiao Jingcheng, Chen Huimin , Dian Kang,Yuhao Shao,Boyu Shen,Xinuo Li, Xiaoxi Yin, Zhangpei Zhu, Haofeng Li, Tai Rao, Lin Xie ,Guangj iWang , Yan Liang.Qualitatively and quantitatively investigating the regulation of Intestinal microbiota on the metabolism of panax notoginseng saponins. Journal of Ethnopharmacology. 2016. 194324–336;  [Google Scholar]
  43. Xu Congmin, Zhu Huaiqiu and Qiu Peng. Aging progression of human gut microbiota. BMC Microbiology. 2019. 19:236 [Google Scholar]
  44. Y. Belkaid et T. W. Hand, « Role of the Microbiota in Immunity and Inflammation », Cell, 2014, 157:1, 121‑141,  doi: 10.1016/j.cell.2014.03.011. [Google Scholar] [Crossref] 
  45. Zapata Heidi J, Quagliarello Vincent J. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015; 63(4):776-81.doi: 10.1111/jgs.13310. Epub 2015 Apr 8. [Google Scholar] [Crossref]