International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2020, Vol. 4(4) 84-99

Psidium Guajava Seed Protein Hydrolysates Exhibit Invitro Antioxidant and Inhibitory activity against α- Amylase and α-Glucosidase

Jalil Idi James, Abubakar Aisami, Auwal Shuaibu Mohammed, Linda Saidu, Patricia Samuel & Lama Malum Peter

pp. 84 - 99   |  DOI: https://doi.org/10.29329/ijiasr.2020.312.1

Published online: December 22, 2020  |   Number of Views: 153  |  Number of Download: 494


Abstract

Exposure of certain amino acids in some plant peptides makes them biologically active and can be used as remedy for various diseases including diabetes. This investigation has examined the invitro α-amylase inhibitory properties and the antioxidant activities of Psidium guajava (guava) seed protein hydrolysate. Proteins from guava seed were isolated by precipitation using acid and then broken down by pepsin and trypsin. The degree of hydrolysis by trypsin (42.32±0.44%) was significantly higher than pepsin hydrolysis (31.85±0.32%). Tryptic hydrolysate showed the highest α-amylase inhibition (64.06±0.19%) than peptic hydrolysate inhibition (58.19±0.01%) but lower than acarbose used as standard (72.53±0.04%).  All the hydrolysates show inhibitory activity as their concentration increases. The antioxidant study revealed that the hydrolysates have DPPH and H2O2 prowling activities with ferric reducing antioxidant property and none of the hydrolysates have higher antioxidant activity than the standard (Ascorbic acid). The outcomes therefore indicate the bioactivities of guava seed protein hydrolysates may make it a beneficial anti-diabetic agents.

Keywords: Hydrolysate, Trypsin, bioactive peptides, Psidium guajava


How to Cite this Article

APA 6th edition
James, J.I., Aisami, A., Mohammed, A.S., Saidu, L., Samuel, P. & Peter, L.M. (2020). Psidium Guajava Seed Protein Hydrolysates Exhibit Invitro Antioxidant and Inhibitory activity against α- Amylase and α-Glucosidase . International Journal of Innovative Approaches in Science Research, 4(4), 84-99. doi: 10.29329/ijiasr.2020.312.1

Harvard
James, J., Aisami, A., Mohammed, A., Saidu, L., Samuel, P. and Peter, L. (2020). Psidium Guajava Seed Protein Hydrolysates Exhibit Invitro Antioxidant and Inhibitory activity against α- Amylase and α-Glucosidase . International Journal of Innovative Approaches in Science Research, 4(4), pp. 84-99.

Chicago 16th edition
James, Jalil Idi, Abubakar Aisami, Auwal Shuaibu Mohammed, Linda Saidu, Patricia Samuel and Lama Malum Peter (2020). "Psidium Guajava Seed Protein Hydrolysates Exhibit Invitro Antioxidant and Inhibitory activity against α- Amylase and α-Glucosidase ". International Journal of Innovative Approaches in Science Research 4 (4):84-99. doi:10.29329/ijiasr.2020.312.1.

References
  1. Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S. and Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. J.Food and Bioproducts Processing, 98: 244–256. [Google Scholar]
  2. Aisami A. Jalil, I. J., Muhammad S. M., Boyi, D. A. and Sandra G. Z. (2020). Invitro a-amylase      Inhibitory Activity and Antioxidant Profile of Carica Papaya Seed Protein Hydrolysate.       International Journal of Innovative Approaches in Science Research 2020, Vol. 4 (1), 1          14 https://doi.org/10.29329/ijiasr.2020.237.1 [Google Scholar] [Crossref] 
  3. Amit K. and Priyadarsini K. I. (2011) Free radicals, oxidative stress and importance of antioxidants in human health. J Med Allied Sci 1(2):53–60 [Google Scholar]
  4. Apostolidis, E; Kwon, Y.I; and Shetty, K.(2007). Inhibitory potential of herb, fruit, and funga-         enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Inn            Food Sci Emerg Technol. 8:46–54. [Google Scholar]
  5. Aoife L. M., Yvonne C. O’Callaghan and Nora M. O. (2013). Protein Hydrolysates from Agricultural Crops Bioactivity and Potential for Functional Food Development.  J. Agriculture. 3, 112-130; doi:10.3390/agriculture3010112 [Google Scholar] [Crossref] 
  6. Arise R.O., James J. I, Mic-Braimoh I.M., Korode E., Ahmed R.N, and Osemwegie O., (2019)a   In vitro angiotesin-1 converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L.) M. Roem seed protein hydrolysate. Heliyon 5 (5) e01634. [Google Scholar]
  7. Arise, R.O., Marvellous, A., Acho, Abeeb, A., Yekeen, Ibrahim, A., Omokanye, Elizabeth, O., Sunday-Nwaso, Olatunbosun, S., Akiode, Sylvia, O., and Malomo, (2019)b.  Kinetics of angiotensin -1 converting enzyme inhibition and antioxidative properties of azadirachta indica seed protein hydrolysates, Heliyon, 5 e01747. [Google Scholar]
  8. Arise, R.O., Yekeen, A.A., Ekun, O.E and Olatomiwa, O.J. (2016). Angiotensin-I converting enzyme-inhibitory, antiradical and hydrogen peroxide-scavenging properties of Citrullus lanatus seed protein hydrolysates. Ceylon J. Sci.45: 39–52. [Google Scholar]
  9. Balasubramanian S, Nancy V., Rajesh Kumar R., Saraswathi G. and Sowmya M. ( 2015) Phytochemical and pharmacological evaluation of seeds of Psidium guajava Linn. Annals of Biological Research, 6 (9):29-35. [Google Scholar]
  10. Boye J.I., Aksay S., Roufik S., Ribéreau S., Mondor M., Farnworth E.R. and Rajamohamed S.H. (2010). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 43: 537–546. [Google Scholar]
  11. Brahmi, F., Mechri, B., Dabbou, S., Dhibi, M. and Hammami, M. ( 2012). The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. J. Ind. Crops Prod. 38, 146–152. [Google Scholar]
  12. Chakrabarti, S.,  Jahandideh, F. and Wu, J. (2014). Food-derived bioactive peptides on inflammation and oxidative stress. BioMed Res. Int.  2014, 608979. [Google Scholar]
  13. Devalaraja, S., Jain, S. and Yadav, H. (2011). Exotic Fruits as Therapeutic Complements for Diabetes, Obesity and Metabolic Syndrome. Food Res. Int. 44, 1856–1865. [Google Scholar]
  14. Elixabet, D. C., Alba, R. N., Francesca, A.; Miguel, R., Vito, V., Antonio, S.C., Juan, D., Julio, G. (2017) The hypoglycemic effects of guava leaf (Psidium guajava) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Res. Int., 96, 64–71. [Google Scholar]
  15. Girgih A.T., Udenigwe C.C., Li H., Adebiyi A.P., Aluko R.E. (2011). Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativaL.) protein hydrolysates. J. Am. Oil Chem. Soc. 88: 1767–1774. [Google Scholar]
  16. Hamid A. A, Aiyelaagbe O. O, Usman L. A, Ameen O. M, Lawal A (2010) Antioxidants: its medicinal and pharmacological applications. Afr J Pure Appl Chem 4(8):142–151. [Google Scholar]
  17. Hu, X. F.; Zhang, Q.; Zhang, P. P.; Sun, L. J.; Liang, J.-C.; Morris-Natschke, S.L.; Chen, Y.; Lee, K. H. (2018). Evaluation of in vitro/in vivo anti-diabetic effects and identification of compounds from Physalis alkekengi. Fitoterapia. 127, 129–137. [Google Scholar]
  18. Kamau S.M., Lu R. (2010). The effect of enzymes and hydrolysis conditions on degree of hydrolysis and DPPH radical scavenging activity of whey protein hydrolysates. Curr. Res. Diary Sci. 3: 25-35. [Google Scholar]
  19. Kose, A., and Oncel, S. S. (2015). Properties of microalgal enzymatic pro-tein hydrolysates: Biochemical composition, protein distribution and FTIR characteristics. Biotechnology Reports, 6, 137–143. https ://doi.org/10.1016/j.btre.2015.02.005. [Google Scholar]
  20. Kazeem, M. I.,  Adamson, J. O. and Ogunwande. I, A., ( 2013). Modes of Inhibition of [Google Scholar]