International Journal of Innovative Approaches in Science Research
Abbreviation: IJIASR | ISSN (Print): 2602-4810 | ISSN (Online): 2602-4535 | DOI: 10.29329/ijiasr

Original article    |    Open Access
International Journal of Innovative Approaches in Science Research 2020, Vol. 4(4) 112-129

Bioefficiency of Clarias gariepinus Liver Rhodanese and Physicochemical Parameters of Soil from Cassava Effluent Contaminated Odo-Oba River, Ogbomosho, Oyo State, Nigeria

Emmanuel Korode & Jalil Idi James

pp. 112 - 129   |  DOI: https://doi.org/10.29329/ijiasr.2020.312.3

Published online: December 22, 2020  |   Number of Views: 145  |  Number of Download: 585


Abstract

Cyanide contamination of Soil and aquatic environment has become a great concern in Nigeria because of increase in the number of cassava processing milling plants. The sample collection and the conduct of this experiment took place between September and October when the country is experiencing late rainfall. The levels of physicochemical parameters in soil and plant samples were obtained using Atomic Absorption Spectrophotometer. Soil and plant samples of Amaranthus spinosus were obtained from cassava processing site (site X) and other samples 100m to the cassava mills (site Y) as control. The concentration of metals in soil samples in mg/kg at site ‘X’ recorded were Cr(39.0mg/kg), Mn(3.5mg/kg), Cu(33.0mg/kg), Fe(4.3mg/kg), Pb(2.5mg/kg), and Zn(52.5mg/kg) while  that of site ‘Y’ were Cr(16.5mg/kg), Mn(1.3mg/kg), Cu(13.0mg/kg), Fe(1.9mg/kg), Pb(0.3mg/kg), and Zn(17.0mg/kg). The concentration values for AS, Cd and Nickel in the environment were below detection limit for all soil and plant samples. The concentrations of metals in A. spinosus root and shoot  in mg/kg from  sites ‘X’ were Cr(6.00mg/kg - 8.50mg/kg), Fe(0.55mg/kg - 0.80mg/kg), Cu(4.00mg/kg - 5.50mg/kg), Pb(0.05mg/kg - 0.08mg/kg), Zn(6.00mg/kg - 8.00mg/kg), Mn(0.35mg/kg - 0.5mg/kg) while that of site ‘Y’ were Cr(5.50mg/kg - 8.00mg/kg), Fe(0.545mg/kg - 1.00mg/kg), Cu(4.00mg/kg - 6.50mg/kg), Pb(0.03mg/kg - 0.08mg/kg), Zn(7.50mg/kg - 9.50mg/kg), Mn(0.30mg/kg - 0.60mg/kg). The values of some metals analyzed were above the recommended values by WHO and FEPA. The analysis of effluents and surface water samples resulted in higher figures for most of the parameters and acidic pH in cassava effluent than the surface water sample. The mode of phytoremediation was also investigated. Data obtained suggested the plants could be used for phyto-extraction of these metals. Rhodanese, enzyme that detoxify cyanide was extracted and characterized from the liver of Clarias gariepinus of cassava effluents contaminated Odo-Oba River. The results show specific activities of 0.0526RUmg-1. The optimal temperature and pH of 30˚C and 7.0 were recorded for the enzyme respectively. The Vmax of 9.62RU/Ml and 6.33RU/Ml were obtained for the KCN and Na2S2O3 substrates while for the Km, higher figures of 49.4mM and 28.5mM were recorded respectively. However, the Km values of the fish liver Rhodanese of Clarias gariepinus indicated higher affinity for thiosulphate (Na2S2O3) than for potassium cyanide (KCN) as a substrate, although maximum activity was observed for KCN substrate. Inhibition studies on the enzyme with a number of chloride salts showed that the activity of the enzyme was not affected by Mg2+,, Mn2+,Ca2+  while Ba2+,Hg2+ and Cu2+  inhibited the enzyme considerably.

Keywords: Bioremediation, Phytoremediation, Rhodanese, cyanide, thiocyanate


How to Cite this Article

APA 6th edition
Korode, E. & James, J.I. (2020). Bioefficiency of Clarias gariepinus Liver Rhodanese and Physicochemical Parameters of Soil from Cassava Effluent Contaminated Odo-Oba River, Ogbomosho, Oyo State, Nigeria . International Journal of Innovative Approaches in Science Research, 4(4), 112-129. doi: 10.29329/ijiasr.2020.312.3

Harvard
Korode, E. and James, J. (2020). Bioefficiency of Clarias gariepinus Liver Rhodanese and Physicochemical Parameters of Soil from Cassava Effluent Contaminated Odo-Oba River, Ogbomosho, Oyo State, Nigeria . International Journal of Innovative Approaches in Science Research, 4(4), pp. 112-129.

Chicago 16th edition
Korode, Emmanuel and Jalil Idi James (2020). "Bioefficiency of Clarias gariepinus Liver Rhodanese and Physicochemical Parameters of Soil from Cassava Effluent Contaminated Odo-Oba River, Ogbomosho, Oyo State, Nigeria ". International Journal of Innovative Approaches in Science Research 4 (4):112-129. doi:10.29329/ijiasr.2020.312.3.

References
  1. Adedeji, O. A., Aladesanmi, O. T., Famakinwa, O. A. and Okonji, R. E. (2017).Bioefficiency of Indigenous Microbial Rhodanese in Clean-up of Cyanide Contaminated Stream in Modakeke, Ile-Ife, Osun State, Nigeria. Journal of Bioremediation & Biodegradation, 08(03). [Google Scholar]
  2. Ademoroti, C.M.A. (1996). Standard method for water and effluent analysis. 1st ed Foludex Press Ltd Ibadan. [Google Scholar]
  3. Adeyanju, Muinat M., Bamidele. S. F., Esther N., Ezima Emmanuel T., Ateni, Olusola Obajimi, Akingbemiro Akinsolu, and Oluwagbemiga S. Owa.(2014).Characterization of Thiosulphate: Cyanide sulphur transferase from the gut and body segments of Earthworm (Hyperiodrilus africanus).An International Journal of the Nigerian Society for Experimental Biology, 26(3):, 76–84. [Google Scholar]
  4. Agboola, F. K and Okonji, R. E.(2004). Presence of rhodanese in the cytosolic fraction of the fruit bat (Eidolon helvum) liver.J. Biochem. Mol. Biol. 37(33):275-281. [Google Scholar]
  5. Akinsiku, O.T., Agboola, F.K.,  Kuku, A., and Afolayan A. (2009) Physicochemical and kinetic characteristics of rhodanese from the liver of African catfish Clarias gariepinus Burchell in Asejire Lake. Fish Physiology and Biochemistry DOI 10.1007/s10695-009-9328-4. [Google Scholar]
  6. Akinsiku. O. T., Agboola, F. K., Kuku A, afolayan, A. (2010).Physicochemical and kinetic characteristics of rhodanese from the liver of African catfish Clarias gariepinus Burchell in Asejire lake. Fish physiol. Biochem. 36:573-586. http://dx.doi.org/10.1007/s10695-009-9328-4:PMid:19536635. [Google Scholar]
  7. Akpoveta, O. V., Osakwe, S. A., Okoh B. E. and Otuya B. O. (2010). Physiochemical characteristics and levels of some heavy metals in soils around metal scrap dumps in some parts of delta state Nigeria. J. Appl. Sci. Environ. Manage. 14(4): 57-60. [Google Scholar]
  8. Aladesanmi, O.T., Okonji, R. E., and Kuku, A. (2009).The purification and some properties of rhodanese from Tortoise (Kinixyserosa, Schweigger) Liver. Int. J. Biol. Chem. Sci. 3(5):880-889. [Google Scholar]
  9. Amiya, T., Shrivastava, P., and Saxena, A. (2012). Bioaccumulation of Heavy Metals in Different Components of two Lakes Ecosystem. Current World Environment, 7(2), 293-297. [Google Scholar]
  10. APHA.(1998). Standard methods for the examination of water and waste water, American Water Works Association and Water Pollution Control Federation. [Google Scholar]
  11. Arise, R.O., Aboyewa, J.A., and Osioma,  E. (2015). Biochemical Changes in Lumbricusterrestris and Phytoaccumulation of Heavy Metals from Ugberikoko Petroleum Flow Station Swamps, Delta State, Nigeria. Nigerian Journal of Basic and Applied Science, 23(2), 141-155. doi: http://dx.doi.org/10.4314/njbas.v23i2.9. [Google Scholar] [Crossref] 
  12. Bamgbose, O., Opeolu B.O., Odukoya O.O., Bamgbose, J.T. and Olatunde, G.O.,(2007).Physicochemical characterization of leachates generated from simulated leaching of refuse from selected waste dumps in Abeokuta City, Nigeria, J. Chem. Soc. Nig., 22(1), 117-125. [Google Scholar]
  13. Boulding, J.R. (1994). Description and Sampling of Contaminated Soils. 2nd edn. Lewis Publishers: New York, NY. [Google Scholar]
  14. Cardoso, A. P., Mirione, E., Ernesto, M., Massaza, F., Cliff, J., RezaulHaque, M., and Bradbury, J. H. (2005).Processing of cassava roots to remove cyanogens. Journal of Food Composition and Analysis, 18(5), 451–460. doi:10.1016/j.jfca.2004.04.002 [Google Scholar] [Crossref] 
  15. Chew, M. Y., Boey, C. G. (1972). Rhodanese of tapioca leaf.Phytochem. 11:167-169. [Google Scholar]
  16. Cui, S., Zhou, O. and Chao, L. (2007).Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, Northeast China. Environmental Geology, 51: 1043-1048. [Google Scholar]
  17. Dimestre A., Chrome, T., Portal, J. M., Gerrrard, M and Bertellin, J. (1997). Cyanide degradation under alkaline conditions by a steam of fusarium solani isolated from contaminated soil. Applied and Environmental Microbiology 63: 2729-2734. [Google Scholar]
  18. Dudka, S., and Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: a review. Journal of Environmental Quality, 26, 590–602. [Google Scholar]
  19. Eze, V. C., and  Onyilide, D. M. (2015).Microbiological and physicochemical characteristics of soil receiving cassava effluent in Elele, Rivers State, Nigeria. J Appl Environ Microbiol 3: 20-24. [Google Scholar]
  20. Ezzi, M. I., Pascual, J.A., Gould, B.J., and Lynch, J.M. (2003). Characterisation of the rhodanese enzyme in Trichoderma spp. Enzyme MicrobTechnol 32(5):629–634. d, aoi:10.1016/ S0141-0229(03)00021-8 [Google Scholar]
  21. FAO/WHO.( 1976). List of maximum levels recommended for contaminants by the joint FAO/WHO codex Alimentarias Commission. 2nd series, CAC/FAL,3: 1- 8. [Google Scholar]
  22. FEPA.(1991). Guidelines and Standard for Environmental Pollution Control in Nigeria.Fedral Republic of Nigeria, Nigeria, pp: 61-63. [Google Scholar]
  23. Fred, C. Otuu., Stella, I. A., Petra, O. N., Franklin, C. K., and Anthony A. Attama. (2014). Cyanide Content of Well Water Round- About Cassava Processing Plants In Enugu, South – Eastern, Nigeria International Journal of Environmental Biology, 4(1), 10-12. [Google Scholar]
  24. George Estefan, Rolf sommer and John Ryao. (2013).Methods of soil, plant and water analysis.A manual for the west asia and north   Africa region, Third edition.InternationalCenter for Agricultural Research in the Dry Areas (ICARDA). [Google Scholar]
  25. Gornall, A. G., Bardawill, C. J., and David, M. M. (1949).Determination of [Google Scholar]
  26. serum protein by means of the Biuret reaction. Journal of [Google Scholar]
  27. Biological Chemistry 177: 751–766. [Google Scholar]
  28. Hajek, B.F.,  Karlen, D. L., Lowery, B., Power, J. F., Schumaker, T. E., Skidmore, E. L., and Sojka, T. (1990). Erosion and soil properties. In: W. E. Larson, G. R. foster, d.f.Allamas and G.M. Smith (eds). Research Issues in Soil Erosion Productivity pp.23-40. [Google Scholar]
  29. Hossein, Tayefi-Nasrabadi, Reza.R., (2011).Some  Biochemical Properties of Rhodanese from Liver of Rainbow Trout. International Conference on Medical, Biological and Pharmaceutical Sciences (ICMBPS'2011) Pattaya.493-495. [Google Scholar]
  30. Igbinosa, E. O. (2015). Effect of cassava mill effluent on biological activity of soil microbial community.Environ Monit Assess, 187(7), 418. [Google Scholar]
  31. Ishaq, S. Eneji., Rufus, S. A., and Annune, P. A. (2011). Bioaccumulation of Heavy Metals in Fish (Tilapia Zilli and Clariasgariepinus) Organs from River Benue, North – Central Nigeria. Pak. J. Anal. Environ. Chem, 12, 25-31. [Google Scholar]
  32. John, J. M., Himansu, Baijnath, and Bharti, Odhav. (2009). Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 44:6, 568-575, DOI: 10.1080/10934520902784583. [Google Scholar]
  33. Khan, U., and Uzair, M. (2013).Effect of industrial waste on early growth and phytoremediation potential of avicennia marina (orsk.) vierh. Pakistan Journal of Botany, 45(1), 17-27. [Google Scholar]
  34. Kurban, G. P., and Horowizt, P. M. (1991).Purification of bovine rhodanese by low pH column chromatography.Protein Exp. Purif. 2:379-384. [Google Scholar]
  35. Lee, C. H., Hwang, J. H., Lee, Y. S. and Cho, K. S. (1995) Purification and characterization of mouse liver rhodanese. J.Biochem. Mol. Biol. 28, 170-176. [Google Scholar]
  36. Li, M. S., Luo, Y. P. and Su, Z. Y. (2007).Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South Chinna. Environmental Pollution, 147: 168-175. [Google Scholar]
  37. Lineweaver H, Burk D (1934).The determination of enzyme association constants. J. amer. Chem. Soc. 56:658-666. http://dx.doi.org/10.1021/ja01318a036. [Google Scholar]
  38. Marchiol, L., Assolari, S., Sacco, P., and  Zerbi, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multi-contaminated soil. Environ. Poll.,132,21–27. [Google Scholar]
  39. Nagahara, N., and Nishino, T. (1996) Roles of amino acid residue in the active site of rat liver mercapto pyruvate sulphur transferase. J. Biol. Chem. 271, 27395-27401. [Google Scholar]
  40. Neetika, M. and Ashwani, K. (2013).Physico-Chemical Characterization of Industrial Effluents Contaminated Soil of Sanganer. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 4(2), 226-228. [Google Scholar]
  41. Nigerian Standard for drinking WaterQuality. (2007). Nigeria Industrial Standard NIS 554:2007. Approved by Standards Organization of Nigeria (SON) Governing Council. ICS 13.060.20 [Google Scholar]
  42. O’Hair, S. K. (1995). Cassava Retrieved July 24, 2015, from http://www.hort.purdue.edu/newcrop/cropfactsheets/cassava.html. [Google Scholar]
  43. Obueh, H.O and Odesiri-Eruteyan E. (2016).A-study-on-the-effects-of-cassava-processing-wastes-on-the-soil-environment-of-a-local-cassava-mill-2375-4397-1000177.Journal of Pollution Effects & Control, 4(1-4). [Google Scholar]
  44. Ogundele, D.T., Adio, A.A., and Oludele, O. E. (2015).Heavy Metal Concentrations in Plants and Soil along Heavy Traffic Roads in North Central Nigeria.J Environ Anal Toxicol 5: 334. doi:10.4172/2161-0525.1000334. [Google Scholar] [Crossref] 
  45. Okechi, R., Ihejirika, C. E., Chiegboka, N. A., Chukwura, E., and Ibe,  I. J. (2012).   Evaluation of the effects of cassava mill effluent on the microbial populations and physicochemical parameters at different soil depths.International Journal of Biosciences (IJB), 2, No. 12,, 139-145, 2012. [Google Scholar]
  46. Okonji, R. E., Adewole, H. A., Kuku, A., and Agboola, F. K. (2011).Physiochemical properties of Mudskipper (Periophthalmus Barbarus Pallas) Liver Rhodanese, Australian Journal of Basic and Applied Science, 5(8), 507-514. [Google Scholar]
  47. Okunade, D.A., and Adekalu, K.O. (2013).Physico-chemical analysis of contaminated water resources due to cassava wastewater effluent disposal. European Journal of Science and Technology.2: 75-84 [Google Scholar]
  48. Omomowo, I.O., Omomowo, O. I., Adeeyo, A.O., Adebayo, E.A., Oladipo, E. K. (2015). Bacteriological Screening and Pathogenic Potential of Soil Receiving Cassava Mill Effluents.International Journal of basic and applied Science, 03, 26-36. [Google Scholar]
  49. Osakwe, S.A. (2012) Effect of cassava processing mill effluent on physical and chemical properties of soils in Abraka and Environs, Delta State, Nigeria. ResJChemSci 2: 7-13. [Google Scholar]
  50. Oyedeji, O. O., Awojobi, K.O., Okonji, R.E., Olusola, O. O. (2012). [Google Scholar]
  51. Characterization of Rhodanese Produced by Pseudomonas aeruginosa [Google Scholar]
  52. and Bacillus brevis Isolated from Soil of Cassava Processing Site. African Journal of Biotechnology 12: 1104-1114. [Google Scholar]
  53. Shentu, J. L., He, Z. L., Yang, X. E., & Li, T. Q. (2008).Microbial activity and community diversity in a variable charge soil as affected by cadmium exposure levels and time. Journal of Zhejiang University.Science. B, 9, 250–260. [Google Scholar]
  54. Sorbo, B. H. (1951). Rhodanese. Method Enzymol. 2(2):334-337. [Google Scholar]
  55. Ulmer, D. D., and Vallee, B. L. (1972) Role of metals in sulphur transferase activity. Ann. Rev. Biochem. 32, 86-90. [Google Scholar]
  56. Uzochukwu, S., Oyede, R.A., and Ayanda, O. (2001). Utilization of garri industry effluent. Nigerian J Microbiol15: 87-92. [Google Scholar]
  57. Weber-Scannell, P. K., Duffy, L. K. (2007). Effects of TDS on aquatic organisms: a review of literature and recommendation for Salmonid species. American J Environ Sci 3: 1-6. [Google Scholar]
  58. WHO. (1996). Permissible limits of heavy metals in soil and plants (Geneva: World Health Organization), Switzerland. [Google Scholar]
  59. WHO.(2004). Guidelines for drinking water. 3rd edition Recommendations 1: p.515. [Google Scholar]
  60. Yanhua, W., Liu, Y., Tang, A., Li, Q., and Wang, S. (2012). Purification of and Biochemical Characterisstic of Cyanide-degrading Enzyme Alcaligene Sp.DN25, Journal of Apllied and Environmental Biology, 01,104-114. [Google Scholar]
  61. Yanqun, Z., Yuan, L., Jianjun, C., Haiyan, C., Li, Q., & Schvartz, C. (2005).Hyper accumulators of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environment International, 31(5), 755-762. [Google Scholar]
  62. Yoon, J., Cao, X., Zhou, and Ma, L.Q. (2006).Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368: 456-464. [Google Scholar]