Pen Academic Publishing   |  ISSN: 2602-4810   |  e-ISSN: 2602-4535

Original article | International Journal of Innovative Approaches in Science Research 2020, Vol. 4(3) 52-65

Investigation of the Synthesis and Biological Activity of A New Imine  Compound Containing Ferrocene and Benzothiazol

Büşra Dalgıç, Neslihan Demir & Mustafa Yıldız

pp. 52 - 65   |  DOI: https://doi.org/10.29329/ijiasr.2020.273.1   |  Manu. Number: MANU-2006-29-0001.R1

Published online: September 29, 2020  |   Number of Views: 12  |  Number of Download: 48


Abstract

In this study, a new Schiff base containing ferrocene and benzothiazol was synthesized from the reaction of ferrocene-2-carboxialdehyde and 6-methoxybenzo[d]thiazole-2-amine. The structure of the synthesized original imine compound 2-((6-methoxybenzo[d]thiazol-2-ylimino)methyl) ferrocene was illuminated by UV-VIS, FTIR, MS and NMR spectroscopy. The antimicrobial activity of the compound was determined by the minimum inhibition concentration (MIC) method against various bacterial and yeast cultures, and the antioxidant activity was determined by the free radical scavenging activity of 2,2-diphenyl-1-picrilhydrazyl (DPPH). DNA cleavage activity of Schiff base was investigated hydrolytically and oxidatively by agarose gel electrophoresis method, and binding to DNA was investigated by UV-Visible field spectroscopy method. It was found that the studied ferrocene and benzothiazole imine compound had more effect on Pseudomonas aeruginosa (ATCC 27853) and Bacillus subtilis (ATCC 6633) bacteria. The compound was found to exhibit good antioxidant activity compared to the standardized butylated hydroxy toluene (BHT). Agarose gel electrophoresis studies showed that the compound cleaved DNA without any external agent, and UV-Vis spectroscopy studies showed that it interacted electrostatically with CT-DNA.

Keywords: Ferrocene-2-carboxyaldehyde, Benzothiazol, Schiff base, Antimicrobial activity, Antioxidant activity, DNA cleavage, DNA binding


How to Cite this Article?

APA 6th edition
Dalgic, B., Demir, N. & Yildiz, M. (2020). Investigation of the Synthesis and Biological Activity of A New Imine  Compound Containing Ferrocene and Benzothiazol . International Journal of Innovative Approaches in Science Research, 4(3), 52-65. doi: 10.29329/ijiasr.2020.273.1

Harvard
Dalgic, B., Demir, N. and Yildiz, M. (2020). Investigation of the Synthesis and Biological Activity of A New Imine  Compound Containing Ferrocene and Benzothiazol . International Journal of Innovative Approaches in Science Research, 4(3), pp. 52-65.

Chicago 16th edition
Dalgic, Busra, Neslihan Demir and Mustafa Yildiz (2020). "Investigation of the Synthesis and Biological Activity of A New Imine  Compound Containing Ferrocene and Benzothiazol ". International Journal of Innovative Approaches in Science Research 4 (3):52-65. doi:10.29329/ijiasr.2020.273.1.

References
  1. Addison, A. W., Palaniandavar, M., Driessen, W. L., Paap, F., & Reedijk, J. (1988). Copper      complexes of some tetradentate pyrazolyl amines. Inorganica Chimica Acta, 142(1), 95-100. [Google Scholar]
  2. Anastassopoulou, J. (2003). Metal-DNA interactions. Journal of Molecular Structure, 651, 19-26. [Google Scholar]
  3. Azam, M., Wabaidur, S. M., Alam, M. J., Trzesowska-Kruszynska, A., Kruszynski, R., Alam, M., ... & Islam, M. S. (2019). Synthesis, structural investigations and pharmacological properties of a new zinc complex with a N4-donor Schiff base incorporating 2-pyridyl ring. Inorganica Chimica Acta, 487, 97-106. [Google Scholar]
  4. Biot, C., François, N., Maciejewski, L., Brocard, J., & Poulain, D. (2000). Synthesis and antifungal activity of a ferrocene-fluconazole analogue. Bioorganic & Medicinal Chemistry Letters, 10(8), 839-841. [Google Scholar]
  5. Birbiçer, N. (1998). Suda çözünülebilir boyar maddelerin metal komplekslerinin sentezi ve boyar madde özelliklerinin incelenmesi (Doktora Tezi, Çukurova Üniversitesi, Adana). [Google Scholar]
  6. Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. [Google Scholar]
  7. CLSI, W. (2006). Clinical and laboratory standards institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approve Standard M7-A7, CLSI, seventh ed, PA, USA. [Google Scholar]
  8. Ganji, N., Rambabu, A., Vamsikrishna, N., & Daravath, S. (2018). Copper (II) complexes with isoxazole Schiff bases: Synthesis, spectroscopic investigation, DNA binding and nuclease activities, antioxidant and antimicrobial studies. Journal of Molecular Structure, 1173, 173-182. [Google Scholar]
  9. Global Burden of Disease Cancer Collaboration. (2015). The global burden of cancer 2013. JAMA Oncology, 1(4), 505. [Google Scholar]
  10. Göçmen, E. (2014). Bazı tek ve çift dişli tersiyer fosfin ligantları içeren yeni gümüş (I) sakkarinat komplekslerinin sentezi, karakterizasyonu, yapıları, DNA bağlanma ve biyolojik aktivite çalışmaları (Yüksek Lisans Tezi, Uludağ Üniversitesi, Bursa). [Google Scholar]
  11. Itoh, T., Shirakami, S., Ishida, N., Yamashita, Y., Yoshida, T., Kim, H. S., & Wataya, Y. (2000). Synthesis of novel ferrocenyl sugars and their antimalarial activities. Bioorganic & Medicinal Chemistry Letters, 10(15), 1657-1659. [Google Scholar]
  12. Jenkins, T. C. (1997). Optical absorbance and fluorescence techniques for measuring DNA–drug interactions. In Drug-DNA Interaction Protocols (pp. 195-218). Humana Press, Totowa, NJ. [Google Scholar]
  13. Jerrum, P. W. (2009). Synthesis, analysis and biological evaluation of novel indoloquinoline cryptolepine analogues as potential antitumor agents (Doctoral dissertation, Kingston University, London, UK). [Google Scholar]
  14. Kiran, T., Prasanth, V. G., Balamurali, M. M., Vasavi, C. S., Munusami, P., Sathiyanarayanan, K. I., & Pathak, M. (2015). Synthesis, spectroscopic characterization and in vitro studies of new heteroleptic copper (II) complexes derived from 2-hydroxy napthaldehyde Schiff’s bases and N, N donor ligands: Antimicrobial, DNA binding and cytotoxic investigations. Inorganica Chimica Acta, 433, 26-34. [Google Scholar]
  15. Li, X., Lin, Y., Wang, Q., Yuan, Y., Zhang, H., & Qian, X. (2011). The novel anti-tumor agents of 4-triazol-1, 8-naphthalimides: Synthesis, cytotoxicity, DNA intercalation and photocleavage. European Journal of Medicinal Chemistry, 46(4), 1274-1279. [Google Scholar]
  16. Meunier, P., Ouattara, I., Gautheron, B., Tirouflet, J., Camboli, D., & Besancon, J. (1991). Synthesis, characterization and cytotoxic properties of the first “metallocenonucleosides”. ChemInform, 22(32). [Google Scholar]
  17. Niederhoffer, E. C., Timmons, J. H., & Martell, A. E. (1984). Thermodynamics of oxygen binding in natural and synthetic dioxygen complexes. Chemical Reviews, 84(2), 137-203. [Google Scholar]
  18. Özşahin, A. D., & Bozhan, N. (2018). Bazı Schiff Bazlarının Saccharomyces cerevisiae BY4741 kültür ortamlarında biyokimyasal parametreler üzerine etkileri. Tarım ve Doga Dergisi, 21(2), 131. [Google Scholar]
  19. Patil, R. H., Kalam Khan, F. A., Jadhav, K., Damale, M., Akber Ansari, S., Alkahtani, H. M., ... & Sangshetti, J. N. (2018). Fungal biofilm inhibition by piperazine‐sulphonamide linked Schiff bases: Design, synthesis, and biological evaluation. Archiv der Pharmazie, 351(3-4), 1700354. [Google Scholar]
  20. Peter, S., & Aderibigbe, B. A. (2019). Ferrocene-based compounds with antimalaria/anticancer activity. Molecules, 24(19), 3604. [Google Scholar]
  21. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55-74. [Google Scholar]
  22. Razafimahefa, D., Ralambomanana, D. A., Hammouche, L., Pélinski, L., Lauvagie, S., Bebear, C., ... & Maugein, J. (2005). Synthesis and antimycobacterial activity of ferrocenyl ethambutol analogues and ferrocenyl diamines. Bioorganic & Medicinal Chemistry Letters, 15(9), 2301-2303. [Google Scholar]
  23. Qiao, X., Ma, Z. Y., Xie, C. Z., Xue, F., Zhang, Y. W., Xu, J. Y., ... & Yan, S. P. (2011). Study on potential antitumor mechanism of a novel Schiff Base copper (II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. Journal of Inorganic Biochemistry, 105(5), 728-737. [Google Scholar]
  24. Sahu, R., Thakur, D. S., & Kashyap, P. (2012). Schiff base: An overview of its medicinal chemistry potential for new drug molecules. International Journal of Pharmaceutical Sciences and Nanotechnology, 5(30), 1757-1764. [Google Scholar]
  25. Schiff, H. (1869). Untersuchungen über salicinderivate. Justus Liebigs Annalen der Chemie, 150(2), 193-200. [Google Scholar]
  26. Simic, M. G. (1988). Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 202(2), 377-386. [Google Scholar]
  27. Sobha, S., Mahalakshmi, R., & Raman, N. (2012). Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 92, 175-183. [Google Scholar]
  28. Strekowski, L., & Wilson, B. (2007). Noncovalent interactions with DNA: An overview. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 623(1-2), 3-13. [Google Scholar]
  29. Sykula, A., Kowalska-Baron, A., Dzeikala, A., Bodzioch, A., & Lodyga-Chruscinska, E. (2019). An experimental and DFT study on free radical scavenging activity of hesperetin Schiff bases. Chemical Physics, 517, 91-103. [Google Scholar]
  30. Ünver, H., Boyacioglu, B., Zeyrek, C. T., Yolal, D., Yıldız, M., Yıldırım, N., ... & Elmali, A. (2018). Experimental, DFT calculation, biological activity, anion sensing application studies and crystal structure of (E)-4-[(pyridin-3-ylimino) methyl] benzene-1, 3-diol. Journal of Chemical Crystallography, 48(1-2), 32-46. [Google Scholar]
  31. Wilson, W. D. (1996). Nucleic acids in chemistry and biology. ed. GM Blackburn and MJ Gait, 295. [Google Scholar]
  32. Yıldız, M., Karpuz, Ö., Zeyrek, C. T., Boyacıoğlu, B., Dal, H., Demir, N., ... & Ünver, H. (2015). Synthesis, biological activity, DNA binding and anion sensors, molecular structure and quantum chemical studies of a novel bidentate Schiff base derived from 3, 5-bis (triflouromethyl) aniline and salicylaldehyde. Journal of Molecular Structure, 1094, 148-160. [Google Scholar]
  33. Zeyrek, C.T., Ünver H., Boyacıoğlu, B., Demir, N., Yapar, G., Dal, H., & Yıldız, M. (2018). Synthesis, quantum chemical calculations and molecular docking studies, biological and anion sensor properties of (E)-4-[(4-Ethoxyphenylimino)methyl]-2-methoxyphenol. Croatica Chemica Acta, 91 (3), 341-355. [Google Scholar]