Pen Academic Publishing   |  ISSN: 2602-4810   |  e-ISSN: 2602-4535

Derleme Makalesi | Uluslararası Fen Araştırmalarında Yenilikçi Yaklaşımlar Dergisi 2019, Cil. 3(2) 53-65

Peptit Nükleik Asitler (PNA) ve Veteriner Hekimliği Alanındaki Uygulamaları

Nihan Akgüç Çöl

ss. 53 - 65   |  DOI: https://doi.org/10.29329/ijiasr.2019.197.3   |  Makale No: MANU-1906-10-0005.R1

Yayın tarihi: Haziran 28, 2019  |   Okunma Sayısı: 41  |  İndirilme Sayısı: 132


Özet

Peptit nükleik asitler (PNA), tekrarlayan N-(2-aminoetil) glisin birimlerinin peptit bağlarıyla bağlanmış olduğu bir omurgaya sahip, pürin ve pirimidin nükleobazlarının bu omurgaya metilen karbonil bağları ile bağlandığı, DNA'nın sentetik analoglarıdır. PNA, nükleik asitlere göre üstün hibridizasyon ve geliştirilmiş kimyasal ve enzimatik stabilite gibi çok yönlü özellikleri nedeniyle, teşhis ve farmasötik alanlarda büyük potansiyel taşımaktadır. Bununla birlikte, PNA kullanımında en önemli kısıtlama, hücre içine alınımındaki zorluğudur. Bu nedenle, PNA'nın hücre içine alınımını arttırmak için bazı farklı giriş mekanizmaları geliştirilmektedir. Antisens peptid nükleik asit (PNA) oligomerleri, temel gen ekspresyonunun spesifik olarak azaltılması yoluyla bakteriyel büyümeyi önleyen yeni bir potansiyel antibiyotik sınıfı oluşturur. Antisens olarak etki göstermesinin yanı sıra PNA’nın, birçok araştırmada prob amaçlı olarak kullanımı da mevcuttur. Gen düzenleme gibi daha terapötik uygulamalarda, spesifik genom modifikasyonları oluşturmak için de kullanılmaktadır. Bu derleme, PNA'nın yapısını, özelliklerini ve ayrıca veteriner hekimlik alanında kullanılan uygulamalarını kısaca sunmaktadır

Anahtar Kelimeler: Peptit nükleik asitler (PNA), antisens, antibakteriyal,PNA FISH


Bu makaleye nasıl atıf yapılır?

APA 6th edition
Col, N.A. (2019). Peptit Nükleik Asitler (PNA) ve Veteriner Hekimliği Alanındaki Uygulamaları . Uluslararası Fen Araştırmalarında Yenilikçi Yaklaşımlar Dergisi, 3(2), 53-65. doi: 10.29329/ijiasr.2019.197.3

Harvard
Col, N. (2019). Peptit Nükleik Asitler (PNA) ve Veteriner Hekimliği Alanındaki Uygulamaları . Uluslararası Fen Araştırmalarında Yenilikçi Yaklaşımlar Dergisi, 3(2), pp. 53-65.

Chicago 16th edition
Col, Nihan Akguc (2019). "Peptit Nükleik Asitler (PNA) ve Veteriner Hekimliği Alanındaki Uygulamaları ". Uluslararası Fen Araştırmalarında Yenilikçi Yaklaşımlar Dergisi 3 (2):53-65. doi:10.29329/ijiasr.2019.197.3.

Kaynakça
  1. Aldrian-Herrada, G., Desarmenien, M.G., Orcel, H., Boissin, Agasse, L., Mery, J., Brugidou, J., et al. (1998). A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Research, 26(21):4910-6. [Google Scholar]
  2. Amit-Avraham, I., Pozner, G., Eshar, S., Fastman, Y., Kolevzon, N., Yavin, E., et al. (2015). Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A, 112(9): E982-9.  [Google Scholar]
  3. Arya, DP. (2011). New approaches toward recognition of nucleic acid triple helices. Acc Chem Res, 44(2):134-46. [Google Scholar]
  4. Bahal, R., Gupta, A., Glazer, P.M. (2016). Precise Genome Modification Using Triplex Forming Oligonucleotides and Peptide Nucleic Acids. Adv Exp Med Biol, 895:93-110. [Google Scholar]
  5. Bai, H., You,Y., Yan,H., Meng,J., Xue,X., Hou,Z., Zhou,Y., Ma,X., Sang, G.L.X. (2012). Antisense inhibition of gene expression and growth in gram negative bacteria by cell penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials, 33: 659–667. [Google Scholar]
  6. Bentin, T., Larsen, H.J., Nielsen, P.E. (2016). Combined triplex/duplex invasion of double stranded DNA by "tail clamp" peptide nucleic acid. Biochemistry-Us, 42(47):13987-95. [Google Scholar]
  7. Brandt, O. (2003). PNA microarrays for hybridisation of unlabelled DNA samples. Nucleic Acids Res, 31: E119.  [Google Scholar]
  8. Brandt, O. and Hoheisel, J.D. (2004).  Peptide nucleic acids on microarrays and other biosensors. Trends Biotechnol, 22:617 – 622. [Google Scholar]
  9. Chambers, J.P., Arulanandam, B.P., Matta, L.L., Weis, A., Valdes, J.J. (2008). Biosensor Recognition Elements. Curr. Issues Mol. Biol., 10: 1–12.  [Google Scholar]
  10. Demers, D.B., Curry, E.T, Egholm, M., Sozer, A.C. (1995). Enhanced PCR amplification of VNTR locus D1S80 using peptide nucleic acid (PNA). Nucleic Acids Res, 23:3050–3055.  [Google Scholar]
  11. Demidov, V.V. (2001). PD-loop technology: PNA openers at work.  Expert Rev Mol Diagn, 1:343–351.  [Google Scholar]
  12. Demidov, V.V. (2002). New kids on the block: emerging PNA-based DNA diagnostics. Expert Rev Mol Diagn, 2:199–201.  [Google Scholar]
  13. Demidov, V.V., Frank-Kamenetskii, M.D, Egholm, M., Buchardt, O., Nielsen, P.E. (1993). Sequence specific double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res, 21:2103–2107.  [Google Scholar]
  14. Demidov, V.V., Potaman, V.N., Frank-Kamenetskii, M.D., Egholm, M., Buchard, O., Sonnichsen, S.H., et al. (1994). Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol, 48(6):1310-3. [Google Scholar]
  15. Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S.M., Driver, D.A. et al. (1993). PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature, 365(6446):566-8. [Google Scholar]
  16. Egholm, M., Christensen, L., Dueholm, K.L, Buchardt, O., Coull, J., Nielsen, P.E. (1995). Efficient pH independent sequence specific DNA binding by pseudoisocytosine containing bis PNA. Nucleic Acids Res, 23(2):217-22. [Google Scholar]
  17. Fabani, M.M., Gait, M.J. (2008) miR-122 targeting with LNA/2 '-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA, 14(2):336- 46. [Google Scholar]
  18. Ghosal, A., Nielsen, P.E. (2012). Potent antibacterial antisense peptide peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid Ther, 22: 323–334. [Google Scholar]
  19. Ghosal, A., Vitali, A., Stach, J.E.M., Nielsen, P.E. (2013) Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli. ACS Chem Biol, 8: 360–367. [Google Scholar]
  20. Ghosal, A. (2013). Novel antibacterial agents (antibiotics) based on RNA interference using Peptide Nucleic Acid (PNA). Doctorate thesis in Health Science. University of Copenhagen, Copenhagen- Hovedstaden. 107p. [Google Scholar]
  21. Good, L., Nielsen, P.E. (1998) Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat Biotechnol, 16:355–8. [Google Scholar]
  22. Good, L., Nielsen, P.E. (1998) Inhibition of translation and bacterial growth by peptide nucleic acid targeted to ribosomal RNA. Proc Natl Acad Sci U S A, 95:2073–6.  [Google Scholar]
  23. Good, L., Nielsen, P.E. (1999) Peptide nucleic acid (PNA) antisense effects in Escherichia coli. Curr Issues Mol Biol, 1:111–6. [Google Scholar]
  24. Good, L., Awasthi, S.K., Dryselius, R., Larsson, O.N.P. (2001) Bactericidal antisense effects of peptide–PNA conjugates. Nat Biotechnol, 19: 360–364. [Google Scholar]
  25. Igloi, G.L. (2003). Single-nucleotide polymorphism detection using peptide nucleic acids. Expert Rev Mol Diagn, 3:17–26. [Google Scholar]
  26. Isacsson, J., Cao, H., Ohlsson, L., Nordgren, S., Svanvik, N., Westman, G., et al. (2000). Rapid and specific detection of PCR products using light-up probes. Mol Cell Probes, 14:321–328.  [Google Scholar]
  27. Jeon, B.Z.Q. (2009). Sensitization of Campylobacter jejuni to fluoroquinolone and macrolide antibiotics by antisense inhibition of the CmeABC multidrug efflux transporter. J Antimicrob Chemother, 63: 946–948. [Google Scholar]
  28. Kolevzon, N., Nasereddin, A., Naik, S., Yavin, E., Dzikowski, R. (2014). Use of peptide nucleic acids to manipulate gene expression in the malaria parasite Plasmodium falciparum. PLoS One, 9(1): e86802. [Google Scholar]
  29. Koppelhus, U., Awasthi, S.K., Zachar, V., Holst, H.U., Ebbesen, P., Nielsen, P.E. (2002). Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev, 12(2), 51–63. [Google Scholar]
  30. Kuhn, H., Demidov, V.V., Gildea, B.D., Fiandaca, M.J., Coull, J.M. and Frank-Kamenetskii, M.D. (2001). PNA beacons for duplex DNA. Antisense Nucleic Acid Drug Dev, 11:265–270.  [Google Scholar]
  31. Kulyté, A., Nekhotiaeva, N., Awasthi, S.K.G.L. (2005). Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J Mol Microbiol Biotechnol, 9: 101–109. [Google Scholar]
  32. Kurupati, P., Tan, K.S., Kumarasinghe, G.P.C. (2007). Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant beta lactamase producing Klebsiella pneumoniae strain. Antimicrob Agents Chemother, 51: 805– 811. [Google Scholar]
  33. Lansdorp, P.M., Verwoerd, N.P., Van de Rijke, F.M., Dragowska, V., Little, M.T., Dirks, R.W, et al. (1996). Heterogeneity in telomere length of human chromosomes. Hum Mol Genet, 5:685–691.  [Google Scholar]
  34. Lehtola, M.J., Loades, C.J., Keevil, C.W. (2005). Advantages of peptide nucleic acid oligonucleotides for sensitive site directed 16S rRNA fluorescence in situ hybridization (FISH) detection of Campylobacter jejuni, Campylobacter coli and Campylobacter lari. J Microbiol Methods, 62: 211-219. [Google Scholar]
  35. Machado, A., Almeida, C., Carvalho, A., Boyen, F., Haesebrouck, F., et al. (2013). Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Lactobacillus spp. in milk samples. Int J Food Microbiol, 162:64-70. [Google Scholar]
  36. Maekawa, K., Azuma, M., Okuno, Y., Tsukamoto, T., Nishiguchi, K., Setsukinai, K., et al. (2015). Antisense peptide nucleic acid peptide conjugates for functional analyses of genes in Pseudomonas aeruginosa. Bioorg Med Chem, 23(22):7234-9. [Google Scholar]
  37. Marin, V.L., Roy, S., Armitage, B.A. (2004). Recent advances in the development of peptide nucleic acid as a gene-targeted drug. Expert Opin Biol Ther, 4:337-348. [Google Scholar]
  38. Nekhotiaeva, N., Awasthi, S.K., Nielsen, P.E. and G.L (2004) Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther, 10: 652–659. [Google Scholar]
  39. Nielsen, P.E., Egholm, M., Berg, R.H., Buchardt, O. (1991). Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 254(5037):1497-500. [Google Scholar]
  40. Nielsen, P.E. (1995) DNA analogues with nonphosphodiester backbones. Annu Rev Biophys Biomol Struct, 24:167-83. [Google Scholar]
  41. Nielsen, P.E., Egholm, M. (1999). An introduction to peptide nucleic acid. Curr Issues Mol Biol, 1(1-2):89-104. [Google Scholar]
  42. Nielsen, P.E. (2001). Peptide nucleic acid: A versatile tool in genetic diagnostics and molecular biology. Curr Opin Biotechnol, 12(1):16-20.  [Google Scholar]
  43. Nielsen, P.E. (2008). Modulating gene function with peptide nucleic acids (PNA). In: Crooke ST, editor. Antisense drug technology, Taylor & Francis P. 507-18. [Google Scholar]
  44. Nielsen, P.E. (2010). Targeted gene repair facilitated by peptide nucleic acids (PNA). Chembiochem, 11(15):2073-6. [Google Scholar]
  45. Orum, H., Nielsen, P.E., Egholm, M., Berg, R.H., Buchardt, O. and Stanley, C. (1993). Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res, 21:5332–5336.  [Google Scholar]
  46. Orum, H., Nielsen, P.E., Jorgensen, M., Larsson, C., Stanley, C. and Koch, T. (1995). Sequence-specific purification of nucleic acids by PNA-controlled hybrid selection. BioTechnique, 19:472–480.  [Google Scholar]
  47. Patenge, N., Pappesch, R., Krawack, F., Walda, C., Mraheil, M.A., Jacob, A., Hain, T., Kreikemeyer, B. (2013). Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Mol Ther Nucleic Acids, 2: e132. [Google Scholar]
  48. Pellestor, F., Paulasova, P. (2004). The peptide nucleic acids (PNAs), powerful tools for molecular genetics and cytogenetics. Eur J Hum Genet, 12(9):694-700. [Google Scholar]
  49. Perry-O’Keefe, H., Yao, X.W., Coull, J.M., Fuchs, M. and Egholm, M. (1996). Peptide nucleic acid pre gel hybridization: an alternative to Southern hybridization. Proc Natl Acad Sci USA, 93:14670–14675.  [Google Scholar]
  50. Perry-O'Keefe, H., Rigby, S., Oliveira, K., Sørensen, D., Stender, H., et al. (2001). Identification of indicator microorganisms using a standardized PNA FISH method. J Microbiol Methods, 47: 281-292. [Google Scholar]
  51. Pieńko, T., Wierzba, A.J., Wojciechowska, M., Gryko, D., Trylska, J. (2017). Conformational dynamics of cyanocobalamin and its conjugates with peptide nucleic acids. J Phys Chem B, 121:2968– 2979. [Google Scholar]
  52. Pooga, M., Soomets, U., Hallbrink, M., Valkna, A., Saar, K., Rezaei, K., et al. (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol, 16(9):857-61. [Google Scholar]
  53. Ray, A., Norden, B. (2000). Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future. FASEB J, 14(9):1041-60. [Google Scholar]
  54. Rajasekaran, P., Alexander, J.C., Seleem, M.N., Jain, N., Sriranganathan, N., et al. (2013). Peptide nucleic acids inhibit growth of Brucella Suis in pure culture and in infected murine macrophages. Int J Antimicrob Agents, 41: 358-362. [Google Scholar]
  55. Rasmussen, L.C., Sperling-Petersen, H.U., Mortensen, K.K. (2007). Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact, 6:24. [Google Scholar]
  56. Równicki, M., Wojciechowska, M., Wierzba, A.J., Czarnecki, J., Bartosik, D., Gryko, D., Trylska, J. (2017). Vitamin B12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci Rep, 7:7644. [Google Scholar]
  57. Ricciardi, A.S., McNeer, N.A., Anandalingam, K.K., Saltzman, W.M., Glazer, P.M. (2014). Targeted genome modification via triple helix formation. Methods Mol Biol, 1176:89-106. [Google Scholar]
  58. Siddiquee, S., Rovina, K., Azriah, A. (2015). A review of peptide nucleic acid. Adv Tech Biol Med, 3(2). [Google Scholar]
  59. Shiraishi, T., Nielsen, P.E. (2014). Cellular delivery of peptide nucleic acids (PNAs). Methods Mol Biol, 1050:193-205. [Google Scholar]
  60. Stender, H. (2003). PNA FISH: an intelligent stain for rapid diagnosis of infectious diseases. Expert Rev Mol Diagn, 3:649–655.  [Google Scholar]
  61. Tyagi, S. and Kramer, F.A. (1996). Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol, 14:303–308.  [Google Scholar]
  62. Veselkov, A.G., Demidov, V., Nielsen, P.E. and Frank-Kamenetskii, M.D., (1996). A new class of genome rare cutters. Nucleic Acids Res, 24:2483–2487.  [Google Scholar]
  63. Wang, H., He, Y., Xia, Y., Wang, L., Liang, S. (2014). Inhibition of gene expression and growth of multidrug resistant Acinetobacter baumannii by antisense peptide nucleic acids. Mol Biol Rep, 41:7535-41. [Google Scholar]
  64. Wittung, P., Kajanus, J., Edwards, K., Haaima, G., Nielsen, P.E., Norden, B., et al. (1995). Phospholipid membrane permeability of peptide nucleic acid. FEBS Lett, 375(3):27-9. [Google Scholar]
  65. Wolffs, P. (2001). PNA-based light-up probes for real-time detection of sequence-specific PCR products. Biotechniques, 31:766–771.  [Google Scholar]
  66. Zhang, X., Wu, S., Li, K., Shuai, J., Dong, Q., et al. (2012). Peptide nucleic acid fluorescence in situ hybridization for identification of Listeria genus, Listeria monocytogenes and Listeria ivanovii. Int J Food Microbiol, 157: 309-313. [Google Scholar]
  67. Zhang, X., Li, K., Wu, S., Shuai, J., Fang, W. (2015). Peptide nucleic acid fluorescence in-situ hybridization for identification of Vibrio spp. in aquatic products and environments. Int J Food Microbiol, 206: 39-44. [Google Scholar]